Field Exercise: Theodolite 2 (Horizontal Angle and Zenith Distance Observations)

1. AIM

To familiarise students with the scale reading theodolite (0.1' theodolite), its centring and levelling and use in measuring zenith distances and horizontal angles.

2. EQUIPMENT (Groups of 2 Students)

1 Scale Reading Theodolite WILD T16 (or RDS), ZEISS Th4, ZEISS 020 or KERN KI-SE
1 Tripod
1 Plumb-bob
1 Peg
1 Hammer
1 Clip Board
1 Survey Umbrella (rain or sun) for hard ground

DEMONSTRATOR 3 WILD Targets
3 WILD GST 20 Tripods

3. EXERCISE

3.1 Choose on the lawn west of the C.E. Building a spot where you can see the three targets (A, B, C) set up by the demonstrator. Drive a peg firmly into the ground and mark a pencil cross on top of it.

3.2 Set up the theodolite over the cross on the peg. Centre by using the optical plummet and by extending and retracting the tripod legs to get the circular level centred.

3.3 Make the vertical axis truly vertical by levelling up with the plate level. Check the centring. If necessary, adjust it by moving the instrument over the tripod head. Avoid any rotation of the instrument when doing this. Check levelling and level again, if necessary. Check again centring.

3.4 Each student in the group will check (and adjust, if necessary) the levelling of the theodolite, will determine 5 times his personal eyepiece constant and will then measure one zenith distance (in both faces) to the most southerly (A) and one to the most northerly (C) target. Adjust the altitude level (if any) carefully before every circle reading and check it again after every reading. (Repeat, if necessary!). Book time, too!

3.5 Select as many targets as there are students in your group this day (in general two, therefore, A and C). The first student measures the horizontal angle clockwise from A to C four times in both faces. Change the "zero" of the circle after every single angle by 90°.
3.6 Repeat the zenith distance measurements described in 3.4

3.7 The second student measures the opposite horizontal angle (clockwise from C to A) also four times in both faces.

3.8 Repeat the zenith distance measurements described in 3.4. (If there is a third group member, he should measure now the third horizontal angle four times).

3.9 Compute in the field the following means, standard deviations of mean and standard deviations of one single observation.

- 1st horizontal angle
- 2nd " "
- 3rd " " (if 3 students in group)
- Vertical angle to A of 1st student
- " " to A of 2nd student
- " " to A of 3rd student
- Vertical angle to C of 1st student
- " " to C of 2nd student
- " " to C of 3rd student

Check, if the sum of all horizontal angles closes to 360°.

3.10 Get the forms signed by your demonstrator, remove peg from ground and return the equipment to the store.

4. REPORT

Each student shall submit the following calculations and graphs:-

4.1 Adjust the two (or three) horizontal angles, using the condition equation:-

\[(1st \text{ angle}) + v_1 + (2nd \text{ angle}) + v_2 + (3rd \text{ angle}) + v_3 = 360°\]

and the misclosure \(w = (1st \text{ angle}) + (2nd \text{ angle}) + (3rd \text{ angle}) - 360°\). Use the standard deviations (calculated in the field) to derive the appropriate weights. Check if the sum of the adjusted angles is equal to 360°.

4.2 Plot in a first diagram, your personal zenith distances to A in function of time. Comment on eventual trends.

4.3 Do the same with your three zenith distances to C.

4.4 Compute the vertical circle index error \(i\) out of all your six personal zenith distance measurements. Calculate mean and standard deviations and plot \(i\) in function of time in a small diagram.

\[i = 0.5 \left(360° - (Z_{FL} + Z_{FR})\right)\]

where \(Z_{FL}\) = zenith distance in face left
\(Z_{FR}\) = zenith distance in face right

Comment on possible trends.

J.M. RÜEGER.
January, 1981
APPENDIX *THEODOLITE II

DIRECTION MEASUREMENT

(VERTICAL ANGLE MEASUREMENT)

STATION NO.: GROUP A

NAME: no name, West of CE Building

Date: 28/6/76 **Locality:** UNSW **Time:** 1200-1600 **Instrument T16 No:**

Observer: H. Hiller Booker **W. Jones** **Weather:** Sunny, no wind

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zenith Distance to TS 138 (Library)</td>
<td>o o o o o o (y o o o o)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS 128</td>
<td>50 40 12 30 12 26 00 24 +29 11 51 11 41 11 45</td>
<td>-9 81</td>
<td>1 678</td>
<td>0 000</td>
<td>1200 Centre of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS 138</td>
<td>50 40 12 30 12 26 00 24 +29 11 51 11 45</td>
<td>0 0</td>
<td>1 678</td>
<td>0 000</td>
<td>1410 Hall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS 138</td>
<td>50 40 12 30 12 26 00 24 +29 11 51 11 45</td>
<td>+9 81</td>
<td>1 678</td>
<td>0 000</td>
<td>1540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>st. dev. of angle: (\sigma = \frac{162}{10} = 16.2'')</td>
</tr>
<tr>
<td></td>
<td>st. dev. of mean: (\bar{\sigma} = \frac{162}{10} = 16.2'')</td>
</tr>
</tbody>
</table>

Zenith Distance to TS 103 (Applied Science)	o o o o o o (y o o o o)									
TS 103	91 16 24 26 36 43 51 00 18 - 116 15 - 116 18	-3 9	1 678	0 000	1200 Centre of					
TS 103	91 16 24 26 36 43 51 00 18 - 116 15 - 116 18	0 0	1 678	0 000	1420 Hall					
TS 103	91 16 24 26 36 43 51 00 18 - 116 15 - 116 18	+3 9	1 678	0 000	1550					
			18''							st. dev. of angle: \(\sigma = \frac{18}{10} = 1.8'' \)
										st. dev. of mean: \(\bar{\sigma} = \frac{18}{10} = 1.8'' \)

Horizontal angle TS 123 (St. Spiritou) → TS 103 (Applied Science)	o o o o o o (y o o o o)	Angle	Hour Angle	
TS 123	00 00 54 18 00 00 46 00 51	Angle: 1 28 58''	Hour Angle: 11 05 39''	
TS 103	51 36 18 27 36 18 51 35 27 51 35 27	+1 1	st of one single angle:	
TS 123	45 01 12 22 12 01 12			
TS 103	96 36 36 27 36 24 51 35 27	+1 1	\(\sigma = \frac{1}{10} = 0.1'' \)	
TS 123	50 00 36 27 00 00 42 00 39			
TS 103	14 19 12 32 13 26 12 51 35 23	-5 25	mean angle:	
TS 123	15 01 00 31 01 06 01 02			
TS 103	18 36 36 26 24 26 27 51 35 24	+4 16	\(\bar{\sigma} = \frac{36}{10} = 3.6'' \)	
			+1 43	

| Eye piece Constant (H. Hiller) | \(-1.2 \) | \(-1.5 \) | \(-1.0 \) | \(-1.8 \) | \(-1.4 = \text{Mean} \) |