School of Surveying UNSW 29,211 Geodesy I

GEODETIC SURVEYING

1. INTRODUCTION

1.1 Objects of Geodetic Surveys

The objects of a Geodetic Control Surveys are

(a) to establish a framework on which less precise observations may be
based. The latter may in turn form a framework for topographical,
cadastral and engineering surveys and maps.

(b) to assist, in combination with astro and satellite etc. observations
and gravity determinations, in determining the size, shape and density
distribution of the earth, and the investigation of the nature of
phenomena on earths surface such as crustal movement etc.

1.2 The Geoid and the Spheroid
Geoid - is the equipotential surface of the earth at mean sea level (level

which oceans find at state of equilibrium). It is not perfectly
regular due to local anomalies in gravitational field caused by non

homogeneous nature of sub strata etc.

The axis of the bubble tube of a levelled theodolite at sea level will be
parallel to the Geoid and hence the rotation axis of the theodolite will be
normal to the geoid; this direction is called "the vertical" or "plumbline".

Spheroid - is the mathematical surface which most closely approximates the
geoid. The surface adopted for this purpose is an "oblate spheroid”
which is the surface obtained by rotating an ellipse about its minor
axis (sometimes known as ellipsoid of revolution).

A line perpendicular to the surface of the spheroid at a point on it

is called the "normal" at that point.

Ground level
¢quipotential The Geodetic Latitude: The Geodetic latitude of

a point is the angle between the normal to the
spheroid through the point and the equitorial plane

of the spheroid.

Ground
Surface The Geodetic Longitude of a point is the angle

between the meridian plane through the point and
Geond an arbitrarily defined zero meridian plane. This
zero meridian plane is usually chosen as the
meridian plane passing through Greenwich.
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Since Astronomical observations depend on the direction of gravity at the point,
the Astronomical latitude and longitude are defined as follows:-

Astronomical Latitude of a point is the angle between the meridianal component
of the direction of gravity (or Vertical) at that point and the, equitorial plane of

the Earth.

Astronomical Longitude. The plane containing the plumb line at a point P and
parallel to the rotation axis of the earth is the astronomic meridian plane of P.




The angle between some designated zero (Greenwich) astronomic meridian plane and
that of the point P is the astronomic longitude of P.

For computation purposes the surface used is a spheroid. If a spheroid could be
chosen which had parameters {semi-major axis, semi-minor axis, directions of axis in
space etc.) which give the best mean fit to the world wide geoid, then the
undulations of the geoid would be about this best fit spheroid. However it is

only recently, since satellite work and continental connections, that this could
even be envisaged. The Normal practice was to adopt the ¢, , Ap of a point (P)
known as the "origin" of surveys as ¢g Ag . (thus forcing the normal of the
spheroid to be along the vertical) and to start calculating from there.

On calculating through the survey one found a ¢g . AG (calculated) for a second
point (Q) at which ¢, , A, were observed.

The descrepancy between these two set of values would be due to

(1) parameters choosen for the best fit spheroid

(2) poor orientation of spheroid at origin

(3) the fact that geoid surface is not parallel to spheroid
surface at all points which gives rise to "deflection of the
Vertical”.

Deflection of the Vertical of a point is the angle between the normal to the
spheroid through the point and the direction of the vertical at that point. This
deflection can be resolved into two components, one along the meridian section and
the other along the prime vertical section.

The deviation in the meridianal section gives rise to differences in ¢g & ¢p
and deviation in the prime vertical section gives rise to Ag & A,.

NOTE: The deflection (deviation) of the vertical is only an absolute fixed
quantity if the geodetic calculations are made on one spheroid.
Values of the deviation of the Vertical may be expected to vary between
a few seconds of arc in plains to 5 or 10" in hilly areas. In mountainous
country higher values may be expected and an extreme value of 71" was
recorded in 1952, 30 miles south of Mount Everest.

1.3 Types of Survey used for Horizontal Control of Geodetic Standards
(a) Precision Astronomy

g = *0.3" in ¢ & A 1" = 30.9 metres

(b) Triangulation: Prior to about 1950, the main framework of a geodetic survey
was almost always a triangulation network. This was replaced by traverse
only if the topography was such as to render triangulation impossible.
Modern triangulation is really a combination of classical triangulation and
trilateration, i.e. with sides measured directly by e.d.m.

(c) Traverse: Traverse using flexible measuring apparatus (tapes, wires etc)
wasionly rarely prior to 1950. The invention of the Geodimeter and later,
the Tellurometer introduced the more frequent use of traversing in
topographically suitable areas, such as Central Australia.

(d) Trilateration: The advent of e.d.m. also introduced the possibility of
trilateration, using triangles of about the same size as those used in a
triangulation net. There seems little advantage in this, and the only
trilateration which appears practicable is the measurement by radar methods,
of very large triangles to enable quick connections between areas separated
by terrain of little topographical interest.

(e) Triangulation and Trilateration combined - Presently known as triangulation
- This strengthens the triangulation network and reduces accumulation of
error in scale,




2. CLASSIFICATION AND ACCURACIES OF GEODETIC SURVEYS

2.1 Classification _ . . .
(a) Triangulation: There are various calssifications of triangulation schemes.

The following classification is into Primary, Secondary, and Tertiary (sometimes
called First, Second and Third order)

Triangle Triangle STD Error Base Base Astro azimuth
Order Sides Miscloses Computed Length Length Frequency frequency
prinasy | 13-150 k| B0 3| A0000 10|55 | soue 0| micut 350 1
Secondary | 10-40 km Max. 5" i;;giggg to iii;:r;n
Tertiary | 1 -10 km Max. 15" ijié?ggoto "

Normally, Secondary and Tertiary triangulations are based on sides in the Primary
net, so that no additional bases or azimuths are required. However, in a small
country, the most ggcurate survey required may be only of Secondary standard. 1In
such a case a proprotionally shorter baseline, measured to less rigourour standards
than first order, could be used.

NB. Of these classifications only Primary is properly considered a Geodetic Survey.

(b) Traverse

A traverse is only considered to be of Primary standard if the traverse distances
can all be measured with standard errors of between 1/40,000 and 1/150,000 and

if the azimuths of the traverse lines are controled so as to have standard

errors no larger than those found in a properly adjusted Primary triangulation.

This requires very frequent Laplace azimuth stations. If lengths are being measured
by e.d.m. (Tellurometer) and are of about 30-40 km, then Laplace azimuths at
alternate stations are desirable.

(c¢) Trilateration

Long-line radar trilateration is of geodetic accuracy only if lines are long enough
i.e. 300-700 km. With shorter lines the uncertainities of measurement due to large
wave lengths used, are greater than the permissible relative errors in primary work.

3. PRIMARY TRIANGULATION

3.1 What is Triangulation ?
Triangulation as the name implies, is a method of fixing relative positions of
points by measuring the angles of a series of triangles, each of which has at
least one side which is common to at least one other triangle. Provided the
“length of any side in the scheme is known, the length of any other side may be
computed. This initial measured length is called a baseline.

Triangulation schemes may be of two main types -

a) Continuous network covering the whole area to be controlléd - (Bomford
: 3rd Ed. Fig. 1.1)

b) A series of interlocking chains of triangles - (Bomford 3rd Ed. Fig. 1.2)
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In pre-computer era, the second was used more than the first because the
adjustment was more easily carried out. This is no longer necessarily so.

3.2 Baseline and Base Extension net
Prior to the advent of EDM, base lines were measured to an accuracy of
1/500 000 - 1/1000 00C by means of tapes and wires. This was an extremely
tedious, painstaking and highly expensive undertaking.For this reason,
base-lines measured prior to about 1950 were generally considerably shorter
than the primary triangulation side. A very careful triangulation network
was employed which worked from the baseline through a series of triangles
graded in size until a length approaching that of a primary side was reached.
This side was then used in the first figure of the triangulation chain proper.
This is called a Base Extension Net.

X

Typical Base
Extension Net

Y

When dealing with optical distance measurement in Surveying II you would have
come across an exact analogy of this process in the methods used to reduce
the errors in measuring a fairly long line by means of a subtense bar. You
would probably have been given an analysis of the improvement in error
propagation which is derived from using a method such as that shown above and
that analysis of course holds for this situation which is exactly the same
except for the matter of scale.

The Geodimeter is capable of measuring directly distances comparable to primary
triangle sides, to accuracies approaching that required of a primary base-line.
Certainly, the length XY ~could be measured at least as accurately, by Geodimeter,
as it could be computed through the base extension net from a primary base-line
"as shown. Where triangulation is still used, the need for short base—llnes

allied with extension nets has therefore vanished.

3.3 Laplace Stations for External Control
It is sometimes said that triangulation based on a short base line violates the
important principle of working from the whole to the part. However, we should
properly consider the widely spaced Laplace astro stations as being the major
control system, the triangulation beéing a method of linking them up.

At Laplace stations, very accurate astro determinations are made of latitude

and longitude. While these are not of sufficient accuracy to provide reasonable
relative accuracy at geodetic triangle size, over long distances the relative
errors are smaller than those obtained by triangulation.

Example:~ High order astro obs. for latitude and longitude are generally
regarded as having standard errors of about #0.3". This represents a distance
error of about 10 metres for each component.

1
(0.3 x %105 x 6 x 10° =] 10 metres)

in . /
.. The actual errorkposition = 102 + 102

R

15 metres



Consider two such points P and Q.

Error in computed distance PQ = 152 + 152 = 20 metres
erroxr 20
x ’ = o = 1
If PQ 50 km 0 50x103 /2500
error _ 20 -
If PQ = 2000 km, 0 = >0x10 = 1/100 000

The second case approaches the accuracy of an adjusted triangulation. It

seems a reasonable approach, in a large area, to have precisely determined
astro. latitudes and longitudes at intervals of 2000 - 3000 km and adjust

the triangulation network to fit onto these. This would, of course, be working
from the whole to the part as required by good survey practice.

3.4 Triangulation Figures
A triangulation figure is a combination of triangles, which may be adjoining
or interlocking. They are often used as units in setting up an adjustment process
for a chain or network. The usual figures for triangulation are

1. Simple triangles

2. Braced gquadrilateral

3. Centred polygons %

We shall now consider the relative merits of these three alternatives, in
terms of speed, accuracy, and area covered.

A fair criterian of speed will be the number of stations required for a certain
length of chain. The controlling factor is likely to be the length of line
that can be observed, and this will be assumed a constant length L. The

accuracy of a layout will depend on the shape of the figures, and the number of
conditions that must be satisfied.

Fig. 4(a) shows a system of simple triangles, equilateral, with side length L.
Every new station after the first adds a length L/2 to the chain; if there

are S stations, the length of chain is then (8-1)L/2, and there are (S-2)
triangles. The number of conditions to be satisfied is one angle condition
pervgriangle; there are then (S-2) conditions. The area of each triangle

is 7 L2 ; the total area covered is then 0.43 L2 (s-2).

T§
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Fig. 4(a)
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Fig. 4(b)

Fig. 4(c)

Fig 4(b) shows a regular system of squares, with diagonals observed. The
limiting factor is the length of the diagonals; if the diagonal is L,

the side length is L/v/f'; every pairS9£ stations after thg_girs£22 gives

a new square, of which there will be —— , of total area —— x — . The
nunmber of conditions will be one side condition and three angle conditions per
square; (three, not four, angle conditions, for only three are independent;
if three aresggrrect, the fourth follows automatically). The total conditions

will be 4 x =~ . or 2(s-2).

Fig 4{(c) shows regular hexagons; every fivg_itations after the first pair
give a new figure, of which there will be =—— ; the length of each figure
in the direction of the chain is V3 L . so the distance covered is /3L x {5-2)
The number of conditions per figure is six independent angle conditions, and one
side condition; the condition that the angles at the centre of the polygon

add to 360° is not strictly an angle condition, but a 'local condition'; it

must be satisfied if the round of angles taken at the control point closes, and
need not be considered. I;Be area covered by each figure is six times the area

of one triangle, or 6 x" 3 L2 ; the total area is then 3/3 12(s-2).

Tabulating these results, we have , 10

| | Distance Conditions Area
Triangles . (s-1)L/2 - (s-2) .43 L2(s-2)
Squares | .35 (S~2)L 2(s-2) .25 12(s-2)
Hexagons .35 (S-2)L 1.4(s-2) .52 L2(s-2)
For a chain of 22 stations, this given » ’

| Distance 7 Conditions' Area

Triangles 10.5 L 20 8.6 1.
Squares , : 7L 40 5.0 L2

Hexagons ' 7L 28 10.4 L2



The deduction therefore is that triangles give most rapid progress; that
squares with diagonals give best accuracy, 3Pd that hexagons cover the
greatest area. It is generally preferred #® a geodetic chain to use a system
of squares or hexagons, so that computation is possible by two independent
routes. In hilly country, the visibility will not restrict the observation
of the diagonals of a square, and this layout may then be preferred; in flat
country, hexagons would be better.

The choice of a figure depends not only on the type of figure but also on

the shapes of the triangles composing it. We refer to triangles being "well-
conditioned" if they are of a shape which gives only a small increase in
error of a computed side. In general this requires the angles used in side
comgutation across the figure to be no smal%er than 30 and no larger than
1507, and the closer they can be made to 90  the better.

Divection of PRrogress of chawn

(b?

(a)

For the given direction of progress of the chain, the error propagation

across (b) will be slower than across (a) because of the better sized angles
used in the length transfer across the figure. Even though the triangles used
in both are the same shape, in (a) they are not as well-conditioned as they
are in (b), because of their orientation with respect to the chain.

A more detailed treatment of error propagation in triangulation figures will
probably be part of Geodesy II

3.5 Steps in Triangulation

1. Reconnaissance

2. Station building

3. Base Measurement

4. Angle measurement

5. Laplace observations

6. Computation through triangles

3.5-1 Reconnaissance
Bomford mentions three forms which he implies are alternatives. These consist
of:~-

a) Examination of existing maps (if any)
This may enable a “"paper" layout of a possible chain, or a number of alternative
chains. 1In suitable country (i.e. very hilly or moderately mountainous) he
claims a scheme may be set out with 95% certainty that it will prove practicable.
Personal experience, admittedly in relatively poor triangulation country, indicates
that the paper layout is only a first try, and requires careful examination on
the ground.

b) Aerial Reconnaissance - has been practised in Canada. Helicopters were used
for similar purposes in Australia in the middle 1950's and proved extremely useful.
A special plane table is mounted in the aircraft which is flown on a straight line
marked on the table. The position of the aricraft is estimated from the map and
rays drawn by alidade to hills thought to be possible stations. Intervisibility
is checked by low level runs. »

c) Ground Reconnaissance - this is the most tedious method, but probably
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the one with the highest chance of being 100% correct. All prospective stations
are visited, and intervisibility physically proven. It has the added advantage
that feasibility of routes to prospective stations, location of water, firewood
and sources of supply of food and other requisites are actually known prior to
the actual measuring phase of the survey commencing.

The objectives of the reconnaissance are to choose suitable stations forming
a well conditioned triangulation chain, such that it is physically possible
to make the required measurements (i.e. that stations are intervisible either
from ground level or by using suitable observing towers). It includes the
choice of bases and extension nets {(although these will almost certainly not
be required in modern triangulation),

It seems that a ground reconnaissance should supplement the "paper" or aerial
reconnaissance, at least for doubtful stations or lines. If helicopters are

used, they may be able to land personnel at such stations and combine aerial

and ground reconnaissance in one operation.

A useful formula in determinéng intervisibility is

A
h = hA + (hB - hA) dA+dB - 0.066 dAdB metres
where h h are the heights of the two stations, A + B in metres

A" "B
h 1is the height of the ray of light between themat distance dA km
from A, dB km from B.

e.qg. Reduced Level of Inst. Axis at A is 500 metres
" " of Beacon at B is 400 metres
AB is 30 kilometres
C is 10 kilometres from A, and its R.L. is 460 metres

-

(a) Can the line AB be observed directly
10
h = 500 - 100 x 36 - .066 x 10 x 20
\

= 500 - 33.3 - 13.2
= 453.5
Answer: NO !

(b) To what R.L. must the beacon at B be lifted so that the line of sight from
A will clear C by 3 metres.
This is done by direct proportion.
i.e. 10 km from A, line of sight is to be lifted 9.5 metres.
30 km " a, " " " " 28.5 metres.
.. Required R.L. of Beacon at B will be 428.5 metres. 4

(This can be checked by substituting back into the former equation seeing that
the new value of h 1is in fact 463 m).

3.5-2 Station Building
This term includes the marking and permanent beaconing of triangulation stations.

The essentials are

a) A distinctive, and as far as possible, indestructible, mark at a below
ground level. It may be a brass mark driven into rock, or set in concrete
poured "in site". A mark cut on rock is sometimes a suitable substitute.

b) Provision of two or three reference, or witness marks. These should be



of a suitably durable nature. The bearings and distances of each from the
station mark, and from each other, and their relative heights, should be
carefully measured.

c) If required, a beacon should be erected. This may be a metal or wooden
pole carrying Vanes, which is guyed to concrete anchor blocks. For stations
which will be infrequently occupied, the pole may be supported by a cairn of
rocks. In such cases, the observations are often made from satellite station,
usually one of the witness marks.

For stations which will be frequently occupied (those in areas of future closer
development) special beacon consisting of a short pole and vanes supported by a
tripod or quadripod structure may be used. A theodolite may then be set up
under the beacon.

3.5-3 Base Measurement
Traditional methods of measuring bases by rigid bars or flexible tapes are now
of only historical interest. An excellent account of the methods is given
in "Plane and Gecdetic Surveying",vVol.II,Clark. Modern baselines would
be of full triangle side lengths measured by Geodimeters. The Geodimeter will
be dealt with in the subject "Surveying III" which forms part of your course.

3.5-4 Angle Measurement
Angle measurements in Primary Geodetic Surveys were formerly made using large
double centre or double axis theodolites (9" - 12" circles) with 2 or more
micrometers mounted around the circle and reading directly from it. Individual
angles, and various combinations of angles and/or their explements were
measured by allowing the angle to "build up" a number of times on the circle,
using what many authors call the "Repetition" method of Angle Measurement.

In modern Primary Geodetic Surveys thisis invariably done by the Direction
Method, using glass arc theodolites such as the Wild T3, or the Geodetic
Tavistock, with 5%" and 5" circles respectively. Many of these instruments,
which are often called Direction Theodolites, are constructed without a

lower clamp and slow motion screw. The Repetition method of angle measurement
therefore cannot be used with them. These theodolites are known as single
centre or single-axis theodolite. Angular measurement is now done by measuring
the individual directions of lines using this type of theodolite, and we tend to
deal in differences between directions rather than in angles.

Measurement of Directions

Directions are measured using the general observing method which you have been
taught under the name of the Direction Method, or possibly, the Reiteration Method.
In Geodetic Surveying, we are seeking to obtain the utmost accuracy, so we must
carefully attempt to analyse the systematic errors which are known to affect

the method, and to postulate any possible additional sources of systematic error
which may be present. We must then design a method of observing which will
eliminate, or reduce the effects of, as many as possible of these errors.

Systematic Errors
The systematic errors which may be encountered in the Direction Method, and
methods of countering them are:-

a) Circle Drag

1) Definition:~ Shift cf absolute orientation of the circle in the direction
of rotation.

ii) Remedy. Circle Drag in the originally postulated form is no longer
believed to exist. It is not difficult to set up an experiment to test for it
and no tests have shown conclusively that it exists.

However, there 1is some evidence to indicate that a condition somewhat akin to it exists
in some theodclites, particularly those that have seen considerable use. As wear
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develops in the mounting, say in the threads of the foot-screws etc. a certain
amount of "sloppiness" appears. When the theodolite is rotated in a particular
direction, there is a twisting of the mounting until all the slack is taken up.
When the direction of rotation is reversed, the twist is also reversed, until all
the slack is again taken up. Between these two extreme positions there may be
several seconds of arc change of orientation of the circle.

The condition for this movement to have no effect on the final results is that
there shall be no such movement during the observation of any semi-arc.

(NOTE. We will use Richardus, "Project Surveying", terminology, in which a
semi-arc consists of taking readings on all targets whilst rotating telescope
in one direction. An "arc" consists of two "semi-arcs" taken in opposite
directions).

This can only be ensured by making certain that the total change has occurred
prior to any readings being taken in that semi-<arc. This is done by rotating
the instrument through several complete revolutions in the direction of each

semi-arc, before the semi-arc itself is commenced.

b) Twist

i) Definition

A change in the absolute orientation of the circle, independent of amount or
direction of rotation of the theodolite.

ii) Remedy .

For this to be of a serious nature, it would need to be a continuous twist in
one direction for some period of time. If the direction and rate of the twist
were varying rapidly with time, the effects would tend to become random.

If we take as a model for the twist a movement which goes on at a steady rate

in the same direction for both semi-arcs of a particular arc, then by measuring
one semi-arc swinging in one direction, and the other swinging in the opposite
direction, the effect on the differences of mean directions for the two semi-arcs
will be zero.

Consider a twist at rate 1r in an anticlockwise direction (i.e. observed
directions to a given target is increasing )

Let the time taken between pointing at target 1
- and pointing at target 2 be Atjj, '
the time taken between pointing at target 2
and pointing at target 3 be Aty
the time taken between pointing at target 3
and pointing at target 4 be Atsyg.
Let the times taken in the reverse direction by the same.
Let the true directions to 1, 2, 3, 4 be 4,, dz, ds, dg
Let the time taken between pointing to target 4 at the
"end of the first semi-arc and pointing to the same
target at the beginning of the second semi-arc be Atyy.

. Reduced
Target Face Left: Face Right . ‘Mean Mean
1 lds d, +7(28t, 42865+ 20k + atey) d#¥(sbgrabyytabyryat, ) 0o
2 dr +v.4t, dy+v( Al:&ﬂt,t;ytbt;;-rdﬁ.d do+ U dz- d
3 da+ v (8, 8Ey) da+v{at +4ky+ 2At,4+A.‘.“')'d_, + . d,-d,
4 |dgrr(alig+Bbigtaty ) diiv(Bt, +at,y+aky, +4E,,)| de + - d,-d,
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Of course, if a number of arcs are observed, there may be one arc in which
the twist is reversed.

Even if this goes undetected, its effect on the means derived from a number
of arcs is going to be small.

Fluctuations in r may be regarded as introducing random errors.

¢) Systematic Errors in Circle Graduation

i) Definition

The Dividing Engines used for graduating theodolite circles contain a large
number of gears, cogs, etc. Small deviations from exact circularity,
eccentricity of axes etc. of these components introduce a cyclic systematic
error into the graduations. This will have basically the same pattern for all
circles graduated on a particular engine, although there may be variations
over a long term due to wear in mechanical parts.

The systematic error in the position of a division line on the graduated circle
is given by the Fourier series

t = a' sin(¢-A') + a sin(2¢ +A) + b'sin(3¢+B') + b sin(4¢+B)
+ c'sin(5¢ +C') + ¢ sin(6¢ +C) + ...

where A', B', C', A, B, C, a', b', ¢', a, b, and ¢ are constants and ¢ the
angle represented by the division line (See Richardus p 162)

ii) Remedy

It can be shown mathematically that (1) reading each direction at diametrically
opposite points on the circle and meaning eliminates half the terms in the
fourier series by which the cyclic error of graduation may be represented

(2) such pairs of readings taken at a minimum of 4 equally distributed points on
the circle and meaned will eliminate the first 4 terms of those remaining, and
the ones after these are too small to be significant.

The first part of the remedy is built into the instruments used, and in most of
them the reading is observed by bringing into coincidence the images of two
diametrically opposite parts of the circle. The resulting reading is the mean
of readings taken at the two opposite points on the circle.

The second part of the remedy is to change the circle reading on the R.O0. (Referring
Object) by lSOo/n for each of the n arcs to be measured. In Geodetic Surveys,

n 1is made a multiple of 4 so that the cyclic error will thus be reduced to
infinitesmal proportions.

N.B. For less accurate surveys, perhaps only two arcs will be observed. Thecritically,
it would be better to change the circle orientation after each semi~arc in this

case. However the increase in accuracy is unlikely to be worth worrying about in

this type of survey. The maximum cyclic error in a good theodolite is probably

less than 0.5". (Treated in Surveying III).

d) Systematic Error in the Micrometer Graduation

i) Definition

The micrometer reading in a glass arc theodolite is usually made by measuring an
apparent shift of the circle image relative to an index mark. This apparent shift
is caused by rotating a knob which activates a "parallel plate" or a"wedge'in the
optical train. The micrometer graduations are linear, disregarding the fact that
the function governing the operation of a parallel plate is a sine function.

ii) Remedy

The effect is minimised in the ultimate gean of say n arcs, if the micrometer
reading on the R.O. is made to vary by o for each new arc, where r is the
range of the micrometer.

. > . n
Another source of systematic error due to the micrometer is"micrometer run.
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This is the case where the movement of the micrometer through its whole
range results in the image of the circle being moved through more or less
than the micrometer's range.

Consider the case where a 10' micrometer gives a 10'10" shift of the circlce.
i.e. a reading of 1.0' on the micrometer should be 1'01" etc.

Target A Target B Angle
Observed 0® o1' oo0%o0 60° 07' 00"0 60° 06' 000
True 0° o1' 010 60° 07' 070 60° 06' 06"0
Observed 90° 06' 000 150° 12' o9"s 60° 06' 09"8
True 90° 06' 06%0 150° 12' 120 60° 06' 06"0
S, True angle = 60° 06' 06Y0 Mean Observed Angle = 60° 06' 04"9

Here the taking of two observations on different parts of the micrometer results
in a reduction of the error from the source from 6" to 1.1". Further reduction
can be expected by further evenly distributed readings. So the remedy for the
linear division of the parallel plate micrometer also results in a reduction of
the error due to "micrometer run". (Of course, an instrument with this much
"micrometer run" should be returned to the makers for adjustment).

(N.B. A detailed treatment of Circle Graduation errors, Micrometer Run, and
the theory of the Parallel Plate, will probably form part of Surveying III).

e) Residual Instrumental Errors a,

The effects of all residual instrumental errors is eliminated from the mean
directions by ensuring that equal numbers of readings of each direction are
taken in Face Left and Face Right, EXCEPT FOR that component of the dislevelment
of the trunnion axis which is due to non-verticality of the vertical axis. The
effect due to this source on the observed direction is o tan h, where 0 is
that component of the inclination of the transit axis due-to non-verticality

of the vertical axis and h is the vertical angle to the target concerned.

For Geodetic Surveys in all but very mountainous terrain, the vertical angles
between targets are usually small (because of long distances). Errors due

to this source can therefore be kept small by simply keeping the Plate Level

in good adjustment and being very meticulous about levelling the theodolite.

Where large differences of height, and hence large values of h, are encountered,
it may be advisable to use a striding level, if the instrument is designed to
accept one. This is a level which is supported parallel to the horizontal axis
on journals ground onto the latter. Whilst the telescope is directed towards

the distant target, the graduations on the level tube at each end of the bubble
are read. The Level is then turned end for end, and the bubble extremities again
observed.

Consider a dislevelment of 5", (say left side higher than right side) to be
determined by a striding level which is out of adjustment by 2". (1 graduation
= 4" arc).

. Let the readings at the right hand end be R; and R, before and after reversal
respectively and that at the left hand end be L, and L, before and after
reversal respectively. ' .

Two cases have to be considered

Case 1 Bubble tube graduated continuously from one end. In this case let the
reading at the centre of the bubble tube be M.

1I31L 10 g8 & 4 14 t 2 4 6 & o nY
]

(NN llllll) (}IIIIIHIIID‘|')
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In the first position of the striding level, the bubble is out of centre by

Ly +
54 v = 2P R1

- M)a"

In the reversed position of the striding level, the bubble is out of centre
by

Lo + Ro

- N = 4 -
5 2 * (M 5

) dl!
{because the direction of the level error is opposite, but that of dislevelment
remains same)

Ly - Ly + Ry - Rp

.. Taking mean 5" = % ( 3

) dll

Case 11 Bubble tube graduated outward from centre

s ¢ 3

(Ti;!ﬁli]ﬁiljil ;|> (T]II;IIiﬂIIIIIr{>

Ly - Ry

Here 5+ 2 = 5 a"
and 5-2= 22 g
. . + - - R
.. Taking mean 5" = (Ll L2 R 2) a"

4

If a sign convention is adopted where readings increasing from left to right

(clock wise) are considered positive and vice versa, then the dislevelment

angle O can be expressed, irrespective of the manner in which the level tube

is graduated, by
+

a = —(EE—;—EE) . d" where n 1is the number of

bubble readings. This corresponds to a +ve o0 when left end is higher than

the right end i.e. the vertical axis is tilted towards the right.

Q@

CORRECT DIRECTION

\RachDN

In the figure, OAA' represents a horizontal plane through the instrument
axis at O.

a 1is the target, A its Vertical projection on the horizontal plane and A'
its projection on the horizontal plane along the direction of the vertical
axis, which is inclined to the right by the angle 0. h 1is the vertical
angle to a.
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c = %%5 (c in radians, a small angle)
A'A = o .aA (¢ in radians, a small angle)
aA = OA tan h
A'A = 0. OA tan h
e C = 9;9%35&3_2 = o tan h and multiplying both sides
by p = 206265" , we get
Correction ¢" = d" tanh = - (gﬁtfilg% . d" tan h

and the correct sign is automatically given by strict algebraic calculation
(i.e. if a is below the horizon, the sign of the correction reverses and
also if IL + IR is negative. If both these occur together the sign remains
positive.

3.5 - 4(a) Observing Routine.

From the considerations of the systematic errors in angle measurement, we can
now design a routine suitable for Geodetic Direction measurewsnt.

We must first of all decide on the nuhber of arcs (n) to be measured. This we
can do by studying the random errors of pointing, readinq and circle graduation
(as distinct from cyclic errors of graduation),

(a) Point to Target 1l in F.L. Set micrometer reading to about zero and set circle
reading to about 0°00°'.

(b) Unclamp and rotate telescope through 360° in clockwise direction. Sight
to target 1, make final pointing with tangent screw approaching from left, read
and record .

(c) Swing clockw1se to target 2, intersect approaching always from left, read
and record.

Continue swinging clockwise through full set of targets until last target has
been sighted, read and record.

(d) Change face, turn theodolite anticlockwise through about 540 ’ point to
last target approaching from right, read and record.

(e) Swing anticlockwise to second last target, approachlng from right, read and
record. Continue anticlockwise through targets till first target has been
sighted, read and record.

(£) Change face, with telescope pointed to first target incréase micrometer
reading by about L , and increase circle reading by s vhere r is the

n
range . (ryn) of the mlcrometer and n the number of arcs.

,.,

(g) Repeat setps (b) to (f) untll the n arcs have been read.

If any steep sights are included, the ‘striding level may be used, Observations
will include striding level read;ngs. ' '
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3.5 - 4(b) Choice of n for lst Order Surveys -~ simplified analysis

Oone of the cirteria for 1st Order Triangulation is that errors in triangle angle
sums should average < 1", with a maximum of 3".

Rainsford has shown that the errors in triangle angle sums, for a large number of
triangles, approximates fairly well the normal distribution. If we accept this,
it seems reasonable, since errors in triangle closures of greater than 3" are
rarely encountered, to assume 3" to represent the 99% Confidence Interval, i.e.
that 3" = 3 OT where OT is the Standard Error of a triangle closure.

3 = "

i.e. OT 1
This means that, of a large number of triangles, 68% would have errors of 1"
or less, which would seem to be reasonable if the mean misclose is not to
exceed 1" (it can be shown that this should give a mean misclose of about 0.8").

Each triangle contains 3 angles, each of which is defined by the difference
between mean of two observed directions.

. 2 B 6 2

.. OT = O
where om is the standard error of the mean of 2n observations of a direction
(n arcs, 2 semi-arcs in each).

2
i.e 02 = SE
T 6

[N

let © be the Standard Error of a single observation of a direction (estimated
by Ricgardus, "Project Surveying" as 1.5" for a Wild T3 or similar instrument).

Then
o = 2n. O

2.25 = 2n.

OV bt

e n = 6.75

The most convenient value is probably 8. This is a widely used value. Many
survey department at least in Australia, have for many years made a practice of
observing 32-36 ares, usually spread over two observing sessions. This seems
unreasonably high, particularly when we consider that our estimate of Op = 1" is
probably low by about 25%, and Richardus" estimate of Op is considered by many
authorities to be very conservative.

( UT 1.25, op = 1" leads to n = 2..1)

However we need n { 4 for reduction of cyclic graduation error).

3.5~4(c) Recording, Reducing & Testing Precision

Richardus, "Project Surveying", plé7 has a table for recording and reducing
4 arcs (eight semi-arcs). We use this for a class example by taking only every
second semi-arc from that table.

To make it easier to follow Richardus' example, we will adopt his symbols

s = number of semi-arcs observed
n number of targets (not number of arcs)

L]
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Richardus proves that the following procedure gives the least squares

solution to the adjustment of the observed directions, and hence the sum

of squares of the residuals, [EE ], is a minimum. These € values can then

be used in a calculation of the standard error of an observed direction in

the set, and compared with the estimated standard error of directions observed
in this manner. This comparison will indicate whether the observations are of
an acceptable standard.

In general, let there be s semi arcs on n targets. Let pls, be the jth
observed direction in the jth semi arc. Let p{j be the ith reduced direction in
the jth semi arc. The steps to be followed are

(a) Reduce the observed directions to zero on the R.O.

1 2 3 4 5 6 7
Observed é Observed Dir ]| Reduced to R.O q £ = EE
R Fac t
Stations Pij pij _[al
fe) t " [e) ' [LI " q n

1 L 0 00 08.0 0 00 00.0 00.0} -1.01 1l.00

2 26 28 56.7 26 28 48.7 + 1.4] +0.4] o0.16

3 54 43 22.3 54 43 14.3 + 1.9] +0.8] o0.64

4 65 52 34.5 65 52 26.5 + 0.9] -0.2] 0.04
[q] + 4.2 L =

1 R P25 00 39.9 00 00.0 o.0f -0.1 .01

2 D51 29 28.0 28 48.1 + 0.8] +0.7 . 49

3 P79 43 53.7 43 13.8 1+ 1.4] +1.3] 1.69

4 P90 53 03.7 52 23.8 - 1.8] -1.9} 3.61
[q ] + 0.4] I =0

1 L |90 ol 11.2 | 00.0 0.0] +2.2] 4.84

2 16 29 56.3 28 45.1 - 2.2 0.0 ] 0.00

3 44 44 19.8 43 08.6 - 3.8] -1l.6] 2.56

4 55 53 34.1 | 52 22.9 - |}- 2.7| -o0.s5 .25
[al 1- 8.7] z+0.1

1 R PB15 00 42.8 00.0 0.0l -1.0} 1.00

2 B41 29 30.1 28 47.3 0.0] -1.0}] 1l.00

3 9 44 55.9 43 13.1 + 0.7] -0.4] 0.16

4 20 53 11.9 52 29,1 1+ 3.5 +2.4] 5.76
[q] I+ 4.2]z =0

1 Final Mean 0 00 00.0 gge;i 23,21

2 (®;) 26 28 47.3 52= =S5=] 2.58

3 54 43 12.4

4 §65 52 25.6 -
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(b) Calculate the mean reduced directions P,

¥ S i
rpi ]
Pi = b ) j=1 , 1=1, n; (These are least square adjusted
values)
: s
. Fed § - P
(c) Calculate di4 pij 5
~ n
(437 . .
(d) Calculate €.. = q.. K - i=1 , i =1, s
S

[Many observers use g;; as a measure of the reliability of their observations.
However, this implies that observations on the R.0. are completely free of erroxr
which is obvious nonsense.] A quick check is to consider the €.,. Since we
believe the standard error for a T3 to be *1.5", any Ei' whichléxceeded 4.5"
would be looked at with considerable suspicion. J

However, the best method to test reliability is as follows -

(e) Calculate s? = 75:%%%%:IT ’ s being called the variance factor.

Richardus sets 02 = 2.25 for a T3 (formerly we called this Og).

Our estimate of the variance factor s? can be tested against this, using the
right hand tail region of the F-distribution.

2

In our example s = 2.58.
2
. . S _2.58 _
Variance ratio 57 ° 3.55 = 1.15
(o] =
FO.95 ’ ’ 1.88

((s~1) (n-1) degrees of freedom = number of redundant
observations for s? . The number of
degrees of freedom for o? is infinite,
since it it assumed to be the variance
of an infinitely large population).

Since 1.15 < 1.88 the observations may be assumed to be of precision consistent
with the method and instrument being used.

N.B. Students should read Richardus, "Project Surveying", Sections 14.1 and 14.2
for relevant proofs.

3.5-4(d) Corrections to Mean Directions

The following corrections may need to be applied to the Mean Observed Directions
(i.e. the Pi of the previous section).

(1) Correction for Phase of Signal

Most Primary observations are made at night using electric lamps as signals.
Observing to cylindrical poles in daylight introduces an error known as phase
exrror.

If the signal has a highly reflective surface, sunlight will be reflected towards

the observer from a single vertical line, which will appear to be very bright.
The observer will sight to this bright line. The correction to be applied is -
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c" = ———E;——~—— . p" where ee. (1)
r radius of cylindrical signal
D = distance from observer to signal
a = angle measured clockwise from the sun to the signal,
at the observer's position
p" = 206265 (no. of seconds/radians)

If the cylinder has a matt finish, part of the signal will be illuminated
and part in shadow. The observer will bisect the illuminated section. 1In
this case, the correction will be

r cos’ka
D

c pY » ... (2)

N.B. Proofs of (1) and (2) may be found in Clark, "Plane & Geodetic Surveying",
vVol. II.

(ii) Eccentricity

(a) Eccentricity of Instrument. Let E be the Eccentric station
' C; be the centre
S S be the Distant Signal
Let o be the angle measured clockwise from
EC; to ES
D = distance 18
-dy = distance EC; ( << ¢8)
cy 1is defined by ,» €1 = direction C;S - direction
ES
. in .
By sine rule, sincy _ Sina
d; D
. dy .
sin ¢, = _D sSin Q
. d; 50 metres o
x x = = =——=="=2 = 00l
ma Ccy S 50 km OQ radians

. . . . =10 . -5
The difference between c¢; and sin c¢; is therefore~2 x 10 radians = 4 x 10 secs

J. we can write

disin o

Ci = D

disin a "

or cY =
1 D

(b) Eccentricity of Signal

By similar reasoning, if B is the angle
measured clockwise from SC,; to S¢,
d2sinB

¢y
If both singal and instrument are eccentric, then the total correction is

"
ot = %— (d;sin o + d, sinB)



-20~-

(iii) Reduction of Directions to the'Spheroid

This is required only in the most refined Primary Triangulation at considerable
elevations above the spheroid (hg) , especially in low latitudes.

In general the normals to the spheroid passing through points A and B on the
topographical surface are not coplanar (due to reference surface not being
spherical). The projections of A and B along the normals onto the spheroid
are A; and B; . The plane AA;B, which contains the observed direction AB,
and the plane AA1B; , which contains its projection on the spheroid are not
the same. The observed direction AB should be corrected to yield the
spheroidal direction A;B;

The correction is given by

, A B c" = 9—-2%5- sin 2A cos? ¢ p"
A where c¢c" = (A;B; - AB)"
e = eccentricity of spheroid
hg = mean spheroidal height of A and B
A B, a = semi-major axis of spheroid
A = azimuth of AB
¢ = the mid-latitude of line AB

We can see that sin 2A has max value = 1 when A= 45°
cos? ¢ =1 when ¢ =0

Consider a case where hg = 3 km

-3
7 x 10 x 3 x 10°
2 x 6 x 10°

x 2 x 10°

-1
3.5 x 10

[}

In Australia, cos? ¢ max is about .93

hg max is about 2 km

.o c" < 0.2" anywhere in Australia.

3.5-5 Laplace Observations

The main purpose of Laplace observations is to control the accumulation of

error in the azimuths of sides in the triangulation. Because the deflection

of the local vertical from the normal to the spheroid causes the astronomical
azimuth to be different to the geodetic azimuth (i.e. azimuth on the reference
spheroid), the deflection must be determined. This is done by accurate
observation of the latitude and longitude at the Laplace station. Comparison with
the geodetic values (i.e. those computed by applying the geodetic measurements

to the origin, calculations being done on the reference spheroid) yields a value
for the deflection which can be used to correct the astro. azimuth onto the
spheroid.
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3.5 -5(a) Derivation of Laplace Equation (a simple treatment)

GEODETIC NORMAL ASTRO VERTICAL
{Normal to Spheroid) (Normal to Geoid)

"

For small & ,.n % 20

On the celestial sphere,

(1) &' = (95 - ¢g)" Deflection of the Vertical in the meridian

(2) n" = (4 - Ag)" cos ¢ Deflection of the vertical in prime veftical
or Ap-Ag = n sec ¢

Geodetic Azimuth of R.O. ag = M' =+ R.O. (Clockwise)

Astronomic Azimuth of R.O. Op M -+ R.O. "(Clockwise)

MM = (A - Ag) sin ¢ = ap - ag
or ag = dp- (Aa - Ag) sin ¢ - This is Laplace Equation
Substituting for Aa - Ag

Gg = aa - N sec ¢ sin ¢

o~
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This derived geodetic azimuth is known as Laplace azimuth.

3.5-5(b) Example on the Use of Laplace Stations in Controlling Azimuth

Calculated geodetic longitude for (say) Woodford A = + 151° 01' 49%0
observed Astro longitude for Woodford AA = +1510701' 48%"30
KA - AG = - 0.70
. o
- 5 = + . = -
(XA XG) sin ¢ 0.44 { ¢ 337)
Astro azimuth, Woodford to Razorback aA = 143o 16' 13%55
* : _ - - 3 = o ] "
.. Laplace azimuth o a, = ( AA kG) sin ¢ = 143~ 16' 13711
Calculated Geodetic Azimuth (as obtained through network) = 1430 16' 1l5%64
So misclose in calculated geodetic azimuth + 2953

.. Correction to be distributed through scheme -2%53

3.5-5(c) Effect of Errors in A on Azimuth Correction

The Geodetic and Astronomic A in Australia are subject to an observational ¢

of less than 1Y0. Astronomic azimuths are determined with about the same
precision. Geodetic Azimuths, since they are carried through the triangulation,
are subject to an error about 10x larger. The trinagulation network may therefore
be greatly strengthened by correcting the geodetic azimuths at Laplace stations
by means of the Laplace Equation.

In previous years, the Laplace Azimuth was held fixed in an adjustment. Modern
techniques allow one to supply a variance factor to this value and "float" in
the adjustment (see Comps II).

3.5~-6 Computation through triangles

This involves the following four steps.

1) The observed values are adjusted either by

a) approximate adjustment between Laplace stations or by
b) using Least squares by the condition or parametric method (Comps ITI &
Geodesy 1ITI)

Note - When a condition other than the least squares is applied, it is called
approximate adjustment when least squares is applied it is called rigorous
adjustment.

2) Computation of triangle sides
Triangles are reduced to plane triangles using Legendre's theorem and
solved using plane triangle sine formula.

3) Computation of Azimuths are done by applying the adjusted spheroidal angles
to known reverse azimuths which are obtained by the application of convergence to
foreward Azimuths.

4) Computation of Geographical and/or projection Co-ords
This is covered fully in Geodesy I (Part A) and under map projections.
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4. Trilateration

4.1 Long sides using aircraft and shoran type; equipment

(a) Uses and Applications:- (see Bomford, pp 94-102)

Provides net of lines 300-700 km in length, used mainly for either

(i) Connection between two continental or islands triangulation
systems - now largely superseded by satellite triangulation.

e.g. Europe - Iceland ~ Greenland - Canada
Crete - North Africa
Florida -~ Trinidad in West Indies

(ii) Cover of large uninhabited areas, e.g. Australia, Nth. Canada,
with the basic framework. This will need to be broken down by triangulation
or traverse, but makes it possible to start breaking down anywhere in the
network as and when required for topo - etc. and puts all surveys on same origin.

(b) Method of Measurement

Operation of Shoran/Hiran equipment will be given in more detail in'Geodesy II.

The measurement technique may be as follows

(i) Fly figure-of-eight pattern across line, constantly monitoring
sum of distances AS; + AS; . Three 8s giving six crossings per
day for two days is regarded in Canadian practice as a minimum
requirement (If measured lengths differ by > 1:10%, a 3rd set is
observed) .

(ii) The sum of AS; + AS; (or return transmission times) is recorded
at intervals of 150 m along line of flight ( ® perpendicular to
measured line) and for 1% - 3 km either side of §;S;. Plotting
AS; + AS» vs time gives a parabola. The minimum of the parabola
gives the required distance, AS; + AS, when the aircraft was
over the line §;8,.

Given heights above spheroid of S; & S; and the aircraft, calibration constants
of the equipment, meteorological data (or good estimate) all along lines AS,;, AS;
and the velocity of transmission, the spheroidal Geodetic distance PP, may be
computed. : .

SPHERDID

r.



(c) Station Siting and Aircraft height

(i) Stations should be on hills with a clear slope in the direction of
far terminals of lines, and line should not graze ground or sea.
Want lines to avoid abnormal & vertical refraction. If a microwave
passes horizontally into a temperature inversion, its curvature
may become equal to that of the earth. For some distance it will
be trapped at that level and its path will depart seriously from
normal curve. This risk can be avoided if the lines leaves the
lower station at an elevation of at least %©.

Therefore angular elevation of aircraft should be at least %° above
horizon.

(ii) From point of view of refraction and velocity of transmission,
observations are probably best taken between noon and 4pm, but this
will have less importance on a line with good ground clearance, or
one across the sea. For these reasons flying height should be as
great as possible, but if obtained by barometric methods it will be
subject to large errors, and theoretical considerations show a strong
demand for minimum flying height, especially for shorter lines.

For ground sEations at sea level minimum flying height is taken as
1000 (AS/125)° metres, where AS is in km. To this must be added the
height of s above sea level, and 9 x AS metres if minimum elevation
of %° above horizon is to be maintained.
3. Main Systems
SHORAN HIRAN AERODIST
Tech. U§es met;e waves Simi}ar to Tgllurometer system.
Details Signals in pulses Continuous signal 1200-1470 MH=z
of 0.8 s every . (20 cm) modulated to 1.5 MHz.
Same as for .
930 s Shoran Ranges simultaneously recorded
Returned by by pen recorder in aircraft one
Transponders at operator in aircraft and one at
ground stations each ground stn.
One operator at
aircraft and two at
each ground stns.
Weight of |Airborne Same as for Master 15 kg
Equipment 340 kg Shoran
Transponders
680 kg each
Atmospheric{Works in cloud or
Condition |mist. Lines must .
be clear of Same as for
Shoran
surface trees
and buildings.
Range Up to 700 km Up to 700 km Up to 400 km
Sensitivity|8 m range, error 3.5 m due to + 1m + ia%—aaa
varies with modification ’
variation of to keep signal
signal strength. strength
continuously
controlled to
A comaetant.
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(d) Laplace Azimuth Control in long line Trilateration

Certain problems arise in attempting to control azimuth in a Shoran/Hiran
trilateration. These problems are particularly acute when the trilateration
figures form a long narrow chain, rather than a continuous network over a
more or less square area.

In order to include a Laplace azimuth, it is necessary to build in a side of
length short enough for astronomical observation i.e. about 50 km. Extension
of an azimuth from such a line to control a trilateration with sides of 500 km
is bound to introduce considerable weaknesses, as the angles used are deduced,
not measured. Care similar to that required of a classical base-line extension
net is needed.

. 50 km
5 c

a

Azimuth of BC 1is observed
BC = 50 km AB ~ AC =~ 500 km
b2 2 2

= ¢ + a° - 2ac cos B

Differentiating = 2bdb = 2cdc + 2ada -
2a Cos B.dc - 2c Cos B.da + 2ac Sin B.dB

0, SinB= 1

R

If B = 90O Cos B

4B = 2bdb - Zada - 2cdc
2ac
A And since b = ¢ dB = d_‘b.-ga;_g_c_:
a o] a

For Shoran/Hiran Std error/distance is generally > 1:200,000

&b _ dc 1 1 10 .
— 2 % 200,000 *°9°%*3% T 200,000 10" arc

da 1 1 . “ .
< = 200,000 x 50 x 500 0.1 (may be ignored)

gince db, dc may be either +ive or ~ive, we can say

db. 2
(aB)? )
a8 14%
The effect of an error of 14" in the bearing of BA on the position of A is

14

2
(gg) = 100 + 100

14

500000 x 14

206265 = 35 metres

The error in position of A due to the error in length of BA is only

500000

565666— ’= - 2.5 metres
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Four possible methods of improving the accuracy of azimuth transfer have been
proposed -

(i) Run a chain of geodetic triangulation along a trilaterated side of normal
( = 500 km) length with adequate Laplace control. This is accurate but fairly

expensive. 8

C

(2) Run a traverse along a normal trilaterated side.

A S

(Azimuths controlled by Laplace
stations, and distances measured

by edm)
This is also accurate but expensive.
(3) Looking back at the equation obtained above
8 4 - & _de _da
a a c
where last term is 2 orders smaller than the

A others.

If we were reasonably certain that db and
C dc are of about the same magnitude and have
the same algebraic sign, then 4B =+ 0

If both lines AB and AC were measured at the same time (i.e. in same runs by

aircraft)which may not be too inconvenient, their meteorological and instrumental

errors are likely to be similar, and ég., de are likely to be of about the same
a

magnitude and algebraic sign and hence will tend to cancel in their effects on B.

(4) Technique described in a paper "A Long Line Azimuth Technique complements Hiran"
H.R. Kahler and Owen W. Williams, I.A.G. Helsinki, 1960. Used to determine azimuth
of long Hiran line, as follows =

An aircraft, flashing a light, flies across the line at such an altitude
that it is visible from both ends. A series of flashes is simultaneously
photographed against the stellar background by 1000 mm focal length cameras installed
at each end of the line. (The light is made to flash so that simultaneous images
are automatically secured and it is only necessary to identify corresponding images
on the two plates by (for example) having every tenth flash omitted). The azimuth
of the ground line joining the cameras may be computed from information derived from
the photos.
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4.2 Trilateration with sides of normal geodetic length

It is obviously possible to measure all the sides of ordinary geodetic triangles using
the Tellurometer, instead of measuring all the angles by theodolite.

There is an obvious advantage that there is no accumulation of scale error such as
that occurs in triangulation, and which may still be present, midway between
baselines even after adjustment. E

However, error in azimuth will accumulate at least as rapidly as and probably more
rapidly than, it does in triangulation of similar quality. The benefit of accurate
scale is therefore lost unless Laplace azimuths are included in at least half the
stations along one flank, or other continuous line of stations.

L L L

This is the method recommended by Bomford. It seems however that if one were going
to occupy every second station with theodolite one might as well read rounds of
angles whilst there. This would give almost Laplace azimuths for many lines in

the network and would seem to almost overcontrol it for azimuth if such is possible.
It would seem more economical, and probably as effective, to just turn the flank
into a traverse, with Laplace stations every second station.

Another disadvantage is that trilateration provides no simple check comparable
to the summation of angles in a triangle {angles derived by solution of a
triangle from the measured sides will always add up to 180°) .

In some types of country, a chain of geodetic triangles suitable for trilateration

may be difficult to find. = It appears that traversing would be a suitable
alternative for such places.

S. Primary Traverse

5.1 Traverse vs Triangulation

Traverse was for long regarded as an inferior substitute for triangulation since

i) It was generally held to be of lower accuracy
ii) It provides fewer control stations than triangulation.

However the accuracy of the traverse can be increased to that of Primary
triangulation or even better by

(1) Measuring each traverse line to Primary triangulation base line
: accuracy.
(2) Measuring traverse angles by procedures similar to that of Prlmary
triangulation angles. :
(3) Having Laplace azimuths at each stn.

To obtain Primary triangulation accuracy, the accuracy of linear measurement
and frequency of Laplace azimuths may be relaxed. The amount of relaxation has to
be found.

Primary triangulation usually has closing errors on base lines of < 1: :10° and scale
error remaining after adjustment between bases should be less than 1:2 x 105,
Overall accuracy between points separated by continental distances should be

= 1:5 x 105
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Primary traverse must be of similar accuracy in order to supersede triangulation
as the main control framework.

In suitable country primary traverse can be measured using invar tapes in
catinary, but the method in general use in Australia employs the Tellurometer and
Geodimeter for distance measurement.

Advantages of e.d.m. traverse compared to triangulation

(a) Ease with which a single line can be selected compared to a chain of triangles.

(b) Ease of organising observations to only 2 stns at a time compared to several
scattered stations.

{(c) Radio - telephone is part of the equipment.

{(d) There is no accumulation of scale error.

(e} A system of traverse is easier to adjust than a system of triangulation.

5.2 Azimuth Control in traverses

Aims to determine the frequency of Laplace Azimuths needed to match directional
accuracy of any single traverse line to that of its distance accuracy.

Procedure:
The accuracy of tellurometer measurement of length over reasonable lines

OD
— + 1:200,000
D
This is roughly comparable to 1" of arc in direction. To increase the possibility
of getting this accuracy in direction take 87% confidence interval i.e. 87% of

all directions are within * 1" from mean.

. 1%0

.e oe = 1.5 (since 87% confidence = 1.5 @g)
06 = 0.67 is aimed for.
1) Now, say Gsingle obis for T3 is * +0Y6 (RICHARDUS gives 1.5)

1L " n

[+

g +vV.36 + .36 = + .85
angle

and so O if mean of 16 (16 semi arcs or 8 arcs) measures of an angle
.85
> + QY
+ 0v21 (7550
2) The Oy for Laplace Determination = *0v6 (conservative).

3) .. The O© of the derived azimuth thro' a traverse after n angles
{(each measured by 8 arcs) would be

Ty = + V5.6° + n(.21)? = * /0.36 + 0.45 n
So equating this to our desired accuracy for Ge = +0.67
+ 0.67 = + /0.36 + .045 n
n <2

i.e. Laplace azimuths at at least every second station are needed to meet
criteria.
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6. Height Control for Reduction of Distances to Reference Surface

When heights ae determined by spirit or trig levelling, the value stated

is the height above the geoid, denoted by ho’ However, distance measurements
are to be reduced to the spheroid for computation, so it is necessary to
determine the separation existing along the normal at a point between the
geoid and the spheroid.

6.1 The Geoid-Spheroid Separation (N)

This is the distance (measured radially from centre of earth) between the geoid
and spheroid. It can be determined by means of astro-geodetic levelling. A
geoid'sections'is determined along a lst order control survey, in which precise
. & A, are measured at frequent intervals (= 20 km). Comparison with ¢_ , A
yields deflections of the vertical at the stations, and, since these define

the slope of the geoid with respect to the spheroid, and also because distance
between successive "levelling" stations are known, the variation in N is
determined.

G

An initial value for N is adopted at the Origin of the Survey (at Johnston
origin in Australia N = O, hO = hS = 571.2 m), and successive N values
computed by accumulation along the geoid profile.

€ . . .
GROUND SURFAC N is ht of Geoid above spheroid

Y = deviation of Vertical in the
plane of the profile

dl tan ¢ = pdl

B

S yat
A

]
i

Sypal N_ - N

N values are found at each astro geodetic station, and can be found at the
intermediate stations by interpolation. 1In fact, contours of the whole
continent can be drawn up. Ref. "The Australian Geoid" J.G. Tryer, A.S.

Dec. 72, pp203-214. "A Prelim Geoid Chart for Australia" Fischer & Slutsky, AS,
Dec. 67, 327-311. The N values can also be determined by combining
gravimetric surveys with Laplace obs. taken at greater intervals along the
profile. Here the gravity readings, taken along a wide belt along the survey
route, are used to determine the slope of the geoid with respect to the
spheroid, with the £ . n values providing the general framework.

6.2 Specifications of accuracy for ho' N

GROUND
LavEL A
S = spheroidal distance s
7 = ground level distance SPHEROD)
hg = mean spheroidal height
R = Mean radius R
+
From the figure L _ Rihg
s R
h
= + _S_
1 R
| h
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Differenciating with respect to h_

s _ _ L
dhg R
dh d
L z- = ~ - _iﬁ, since £~ is nearly egqual to
s s R R v s ¥ equ
%§~ is the fractional error in s due to reduction of ground distance to
spheroidal distance and we want this fractional error not to exceed 1:10°.
dh
. ds 1 s 1
i < — 3 — & ——
i.e. [ 3 | AL and therefore R < 1os
r dh < B = 6 metres (R= & 10°m)
O s ___106 . = X
i.e. g = +6m
hg
but h = h + N
S e}
2 2 2
l1.€e. (0] = 0 + O
hg hg N
, = G
So if we assume Oho N
= g = 4.2 m
then Oho N

i.e. 1In order to achieve 1:10° accuracy in our reduction of distance to sea
level, we must know N and ho to better than g of t 4.2,

In practice h_ will be known to a higher accuracy than this; but until the
total geodeticosurvey and adjustment has been carried out, N will only be

approximate, final values of ¢ _ & A (and hence of & & n) will of course
depend on the determination of N, which is in turn dependent on ¢G . A

~ Iterative Process. G



