Transformation of 3D Co-ordinates
BRUCE R. HARVEY

Abstract

As satellite positioning techniques are more frequently used, transformations of
three-dimensional co-ordinates will become common practice. Methods of determining
and applying transformation parameters for transforming 3D co-ordinates are discussed.
The models, appropriate statistical tests and interpretation of the results will also be
considered. The methods presented are applicable to many transformations required by
surveyors in Australia. Some applications are the conversion of Doppler or GPS
co-ordinates into the terrestrial networks and the comparison of Doppler, GPS or
terrestrial data with SLR or VLBI data. In this paper particular emphasis will be placed
on transformations between terrestrial and GPS data.

Introduction

With the advent of GPS, the transformation of 3D co-ordinates wiil become a
common and frequent computation. Thus a clear understanding of the procedures is
essential. Much has been published on this topic in the past. However some incorrect
and misleading statements have been made. This paper, which is based on research
in Harvey (1985), aims to clarify some misconceptions and present further comments
for consideration.

The theory presented in this paper can be applied to many different techniques.
However a common application which is addressed here is to transform GPS co-
ordinates into local survey co-ordinates e.g. AGD 84. (Points whose geodetic co-ordinates
in the survey network are known are referred to as ground points in this paper.) In
this case GPS instruments occupy a number of known ground points and a number
of other points of interest with unknown ground co-ordinates. The transformation
parameters are then determined from the data of those points which have known co-
ordinates in both systems i.e. common points. These transformation parameters are
then applied to convert the GPS co-ordinates of the other points into corresponding
ground co-ordinates.

[f correct procedures are followed, the combined adjustment of two independent
data sets will improve — (i) the accuracy of a network by controlling the systematic
errors, and (i) the precision of the network because additional data is included. If
systematic errors in scale and orientation exist within a geodetic network then not only
will the co-ordinates be incorrect, but their estimated accuracies will be optimistic.
Therefore the combination of independent data also produces more realistic accuracy
estimates.

Two main problems arise when combining data from different networks. They
are: 1) Finding the most accurate estimates of the external bias parameters (i.e. scale,
rotation, translation and systematic error terms) between the systems, and 2) achieving
the best internal combination of the different systems, that is to minimise the corrections
to the observations.

GPS and ground networks are at nearly the same scale and are usually oriented
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to within a few arc seconds of the same reference co-ordinate system (the Conventional
Terrestrial System, CTS), i.e. the CIO, geocentre, Greenwich frame (see ¢.g. Vanicek
and Krakiwsky, 1982). Since both the ground and GPS systems are aligned with the
instantaneous rotation pole and corrections are applied to align them with the CTS
frame, the rotation angles should be near zero. If the GPS and ground co-ordinates
were truly related to the same reference system, they could be more easily combined.
However, even though both GPS and ground co-ordinates are supposedly referred to
the same CTS frame, there usually are significant differences. The differences are due
to systematic errors and errors in the relationship between non-geocentric ground datums
and the CTS. In theory, a series of rotation, scale and translation matrices could be
applied to each net to represent systematic errors and the differences between reference
frames. The elements of these matrices could then be estimated. However, some
parameters will be indistinguishable from others. So it may not be possible to solve
for them separately. Consequently only single rotation, scale, and translation matrices
are estimated.

Transformations

There are a number of ways of transforming one data set to another, An affine
transformation transforms straight lines to straight lines and parallel lines remain
parallel. Generally the size, shape, position, and orientation of lines in a network are
changed. The scale factor depends on the orientation of the line but not on its position
within the net. Hence the lengths of all lines in a certain direction are multiplied by
the same scalar. For a transformation between two large networks with many common
points it may be possible to use a projection transformation where the scale factor is
also a function of position. However this leads to a solution with few (if any) degrees
of freedom when the data sets contain only a few points. Transformations in which
the scale factor does not depend on position within the net, involve fewer parameters
but assume that there are no systematic distortions of the networks.

An affine transformation in which the scale factor is the same in all directions
is called a similarity transformation. A similarity transformation preserves shape, so
angles are not changed, but the lengths of lines and the position of points may be
changed. An orthogonal transformation is a similarity transformation in which the
scale factor is unity. The angles and distances within the network are preserved and
only the positions of points change on transformation.

The general similarity transformation is given by —

X X Tx
Z z | Tz | (1

where s is the scale factor and R is a 3 x 3 orthogonal rotation matrix. There are seven
parameters which are usually associated with three rotation angles, three translation
components and one scale factor. The translation terms (Tx, Ty, Tz) are the co-ordinates
of the origin of the xyz net in the frame of the XYZ net. Scale factors and rotation
matrices are described below.

If the rotations are small, as expected, then the above equation is approximately
linear. A single iteration of a least squares adjustment is then generally sufficient.
However, if additional iterations are required, because of poor a priori estimates of
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the parameters, the convergence is usually very rapid.

[t is presumptuous to assume that similarity transformations, rather than affine
or projection transformations, correctly describe the differences between any two data
sets. However in practice little more than the smoothing of these differences can be
accomplished. Moreover, using fewer parameters would seem to be safer when there
are few common points. Similarity transformations guard against undue deformations
in small regions, but using a similarity transformation on a large network may distort
local scale and orientation. Hence the important question is whether local distortions
in scale and orientation are significant or not. Similarity transformations will tend to
smooth them out. Also, because the similarity transformation is linear in the co-
ordinates, it cannot be applied to estimate, or to allow for, any distortions or
deformations that are common to the two nets.

In a transformation adjustment the mathematical aspects of the model, statistical
analysis, computational errors, and the reliability of the adjustment results, that is,
the stability of the solution, all have to be considered. In a stable solution small changes
in the observations give small changes in the results. Error analysis associated with
least squares adjustment requires a priori assumptions or hypotheses which require
a posteriori testing. The results may also be affected by mathematical approximations
and computational errors (e.g. round-off errors).

Rotation Matrices

The rotation matrices about the x, y, and z axes are given by —

Rz(k) = cosk sink O | Ry(d) =| cos® 0 —sind Rx(w) = | 1 0 0
—sink cosk 0 0 1 0 0 cosw sinw
0 0 1| sinf 0 cosd 0 —sinw cosw 2)

In general, successive rotations of a body about fixed axes are not commutative.
Thus the order of the rotations is important unless the rotations are small.

There are at least three ways of rotating a network, Harvey (1985). However, the
most commonly applied is the Cardanian rotation matrix (Fig. 1) — Rz(k) Ry(¢) Rx(w).

For small rotations the Cardanian rotation matrix can be approximated by —

Rs = 1 k -6
-k l w
0 —w 1 3)

where w, ¢ and k are the rotation angles about the x, y and z axes respectively.

The assumption of small angles is valid for rotation angles of up to about 3”.
However, considerably larger angles can be tolerated if the vectors being rotated are
shorter than an earth radius. For example, rotating a 500 km baseline vector with each
rotation angle equal to 10” will cause only 1 mm error in co-ordinates if Rs is used
instead of Rz(k) Ry(8) Rx(w).

The rotation angles depend on the baseline vectors (i.e. relative positions) and not
on the absolute co-ordinates. Thus it does not matter where the origin of co-ordinates
is because the estimated rotation angles will be the same, provided care is taken to avoid
round-off errors.
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Cardanian Rotations. (Rz(k) Ry(f Rx(w))

Scale Factor

A scale factor can be visualised as follows. Imagine a network is drawn on the
surface of an inflatable sphere. As the sphere is inflated, the points of the .netwc')rk
will be spread apart from each other and from the centre of the sphere. The mflguon
of the sphere is equivalent to the application of a scale faqtor greater than unity.

Multiplication of a set of rectangular Cartesian co-ordinates by a scale factor is
identical to multiplying the corresponding baseline lengths by the same scale factor.
So the scale factor can be determined from either the 3D site co-ordinates or_from
the baseline lengths. Thus, as in the case of rotation angles, the origin of the co-ordinates
has no effect on the results.
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In ellipsoidal co-ordinates the longitude is not affected by a scale change but the
geodetic latitude is changed slightly. For example, a 1 ppm scale change will change
gedodetic latitude by less than about 0.0007” (2 cm). However the effect on ellipsoidal
height is significant. For example, a | ppm scale change will produce a change in height
of about 6.4 m.

Variance Covariance Matrices of Co-ordinates

In a least squares adjustment the stochastic model must be correct as well as the
mathematical model. As always, there is the problem of ‘““internal” and ‘“‘external”
accuracy. The elements of the variance-covariance (VCV) matrices of the data may
represent precision estimates. It is difficult to change these values to accuracies, especially
the off-diagonal terms. The VCV matrices could be multiplied by factors to account
for the differences between internal and external accuracies. But how can these factors
be determined? If only the diagonal terms are increased, for example by adding the
rms of all error sources, or by scaling them, then the correlations will probably be
reduced unless the covariance terms are also increased so as to maintain the original
correlations. There is no guarantee that this is a true representation of the actual VCV
matrix but it may be a good approximation. Application of the covariance law
(Jacobians) to add the effect of systematic errors to the VCV, is the best method.
Unfortunately, it is based on functional relationships between the parameters and the
systematic errors. These relationships may not be known.

The VCV matrix can be diagonal, block diagonal, or a full matrix. Considerable
savings in computer resources can be made if the matrix is sparse. However, in practice
the VCV is not diagonal, because the X, Y and Z co-ordinates of a point are correlated.
Furthermore, the VCV is generally not block diagonal, because a co-ordinate of one
point is usually correlated with co-ordinates of other points. Therefore full VCV matrices
should be used in the computation of transformation parameters. Assuming that the
VCV is block diagonal or diagonal when in fact it is not would cause errors in the results
and their VCV estimates.

Horizontal ground co-ordinates, from a conventional 2D ellipsoidal adjustment,
are usually combined with ellipsoidal heights which are the sum of orthometric height
and geoid-ellipsoid separation at each point. It is usually assumed that these heights
are not correlated with the horizontal co-ordinates.

In both GPS and ground network adjustments, the co-ordinates of one point are
conventionally assigned zero variance. If only a portion of the ground net is to be used
and it is a considerable distance from the fundamental point (e.g. Johnston origin)
then the variances of co-ordinates of the points within this portion will usually be large.
Strang van Hees (1982) gives formulae to convert VCV matrices so that they have
minimum trace, or zero variances for some point(s) within the selected portion of the
network. While the elements of the VCV of the co-ordinates change, the variance of
the lengths and angles within the net do not. Thus the translation parameters and
absolute co-ordinates estimated from a combined ground-GPS transformation
adjustment are physically meaningless.

Co-ordinate Conversion

Both the Bursa-Wolf and Molodensky-Badekas transformation models given below
require Cartesian (XYZ) co-ordinates and their VCV matrix. However frequently
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ellipsoidal co-ordinates and VCV are available and it is necessary to convert them to
co-ordinates and VCV in a Cartesian frame.
The Cartesian co-ordinates can be calculated from —

X = (N+h) cos ¢ cos A
Y = (N+h)cos ¢ sin N
Z = {(1-e’)N+h} sin ¢ 4)

where N = a/ \/l—ezsinzqs and e? = 2f - f?
(For the Australian National Ellipsoid, a = 6378160. and f = 1/298.25.)

The theory of conversion of VCV matrices and the propagation of variances is clearly
presented by Mikhail (1976) and others. The converted VCV matrix can be calculated
from —

VCVxyz = J VCVnJT (5)

where J is the Jacobian matrix.

3 = [ Netsingcosigpeosh _ (N +h) coshsing ~ — (N+h) cos¢sinh  cospcosh
(1 — e’sin’¢)

Ne’singcos’$sinN _ (N 4 h) sin Asing (N +h) cos ¢cosh  cossin\
(1 - e*sin’¢g)

{Ne?sin*¢cos¢ + Ncos¢} (1-¢?) + hcose 0 sing

L (1 —e%sin’¢)

The Jacobian matrix given above is used to transform the VCV of a single point.
For conversion of the VCV of more than one point the full Jacobian matrix is —

(6)

Similarly, the output adjusted co-ordinates and VCV of transformation models
is often in a Cartesian frame. Corresponding ellipsoidal co-ordinates can be calculated
by several methods, one of which is —

-

¢ = arctan {(Z + ¢*Nsing) / R} [iterate]
X = arctan (Y/X)
h = R/cos¢p — N 7

where R = Vx* + y?)
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The VCV matrix of these ellipsoidal co-ordinates can be calculated from —
VCVgyp = J VCVxyz JT 8)

where the Jacobian matrix, J, is —

A YA/X B
~-Y/R? X/R? 0
(X/Recosp) + AC  (Y/Rcosg) + YAC/X BC

where —
A = Xtan¢ / R*(e? — sec’¢) B = 1/(Rsec’¢p — e’Ncose)
C = Rsing/cos’¢ — NeZsingcosd/(1—e’sin’e)

The conversion of the VCV matrix of more than one point can be accomplished
in a manner similar to that used above.

Transformation Models

Several transformation models for combining different data types have been
proposed and are reviewed by Krakiwsky and Thomson (1974) and Adam et al (1982).
Geodetic networks normally cover only small portions of the globe. Thus some of the
transformation parameters will be poorly determined. A number of techniques have
been developed to improve the determination of these parameters. For many
applications, the internal adjustment of the network, i.e. relative co-ordinates, is also
of interest. Each of the models given below is examined to determine their effect on
the internal adjustment and on the estimated transformation parameters. The least
squares design matrices (‘partials’) for each of the models below are given by Harvey
(1985). ’

The co-ordinates of the points of both nets are treated as observations and are
adjusted. It is not necessary to hold the co-ordinates of any point fixed. However this
can be done if desired by, for example, assigning very small variances to the co-ordinates.

Should a model which uses Cartesian or ellipsoidal co-ordinates of sites be applied?
Whilst a data set and its VCV can be converted from one type (e.g. ellipsoidal or
rectangular Cartesian) to another using the formulae given above, the conversion requires
computer time and space and may be undesirable especially for large data sets. In such
a case, the model used might be that which requires the least amount of preconversion
of data.

Bursa-Wolf Model

This model solves for a 7 parameter transformation — a scale factor, 3 rotation
angles, and 3 translation components.

xp| =SSR |xa| + | Ix

YB ya Ty

zp | za Tz_ ©9)
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where R (= Rz(k) Ry(6) Rx(w), is the rotation matrix about the axes of the xyz, system,
XA, Ya and za are the co-ordinates of points in the A net, xg, yg, and zp are the
co-ordinates of points in the B net, s is the scale factor, and Tx, Ty and Tz are the
translations, that is, the co-ordinates of the origin of the xyza system in the xyzg system
(see figure 2). Allowance for rotation angles of any size can be made (Harvey, 1985).
One well known problem is that generally the adjusted parameters are very highly
correlated because the data covers only a smail portion of the Earth’s surface.

Figure 2. Bursa-Wolf Model
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Molodensky-Badekas Model

This model (Badekas, 1969), which removes the high correlation between
parameters by relating them to the centroid (m) of the network, is represented by —

x| = |xm| + |Tx"| +sR | xa — xm
VB ym Ty ya — ym
zp zm Tz’ Zpa — zm 10)

where xm = I Xpi/n, YM = I yai/n, ZM = L za;/. Alternatively m can be equal
to the co-ordinates of one of the points of the A network.

This model gives the same answers as the Bursa-Wolf model for the internal
adjustment, and the scale and rotation parameters. However the translation parameters
are different and have smaller a posteriori precisions. This can be readily shown by
expanding equation 10 as follows —

xg| =P + [T | +sR _xA
yB Ty’ ya
zg_| _Tz’_ | ZA |
where P = xm— - sR xm_
ym ym
zm zm

P is a constant term, that is, it is the same for all points, and obviously affects
the translation terms. The derived values of s and R equal those from the Bursa-Wolf
model. If s and R are approximately equal to unity and the identity matrix respectively,
then the model is very similar to the Bursa-Wolf model. Clearly the difference in the
translation terms obtained from the two models is due to the scaling and rotating of
the point m.

The adjusted co-ordinates, baseline lengths, scale factor and rotation angles, their
VCV matrices and the a posteriori variance factor computed from this model are the
same as those from a corresponding Bursa-Wolf solution. However the translations
are different and their precisions are generally an order of magnitude smaller.

[t is clear that the T’ terms of the Molodensky-Badekas model equal the T terms
of the Bursa-Wolf model only when xm = ym = zm = 0, or s=1 and R=1I. Although
the variances of the T’ terms are smaller than those of the T terms, and are less correlated
with the other parameters, the T’ terms are not better estimates of the T terms. They
are fundamentally different — this is not commonly understood.

When the transformation parameters from this model are to be applied to transform
co-ordinates of points it is essential to know what values of xm, ym and zm were used
in the derivation of the parameters. However, in the past they have not always been
published with the transformation parameters,
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Ellipsoidal Model
This model is given by Harvey (1985) —

o3 = ¢ +Cs +D |w + E | Tx
B A 0 Ty
where C = | —Ne’singcose/(M+h)
0
N(l-e?sin’¢) +h
D = | —sinA{N(1 —e?sin’¢) + h} /(M + h) cosA{N(1—e’sin*¢)+h}/(M+h) 0
{(1—e)N+h}tangpcosh/(N+h) {(1-e*)N+h}tangsin\/(N+h) -1
—Ne?singcosepsinA Ne2singcosdcosA 0
— 1
E =] —singcosN  —singsin\  ¢os¢o
(M+h) (M+h) (M+h)
—sinA COSA 0
(N+h)cos¢p (N+h)coso
COSPCOSA cos¢sinA sing |
where N = a and M = a(l —e?)

V 1—e2sinep (1 —esin’¢)%

¢p is the geodetic latitude, A is the longitude and hy is the ellipsoidal height in the
B net. ¢, A and h are the corresponding co-ordinates in the A net.

This model assumes that the co-ordinates of points in both networks are based
on ellipsoids with the same semi-major axis and flattening. If they are not, one network
should have its co-ordinates and VCV matrix converted so as to refer to the ellipsoid
of the other net, or the model should be extended to cater for different shaped ellipsoids
as in Vanicek and Krakiwsky (1982).

The ellipsoidal method should produce the same results as a Bursa-Wolf solution
because the same parameters are being estimated. So the two models can be used to
check the computer program and any pre-conversion of VCV matrices and co-ordinates.

However, a question of whether the ellipsoidal model or one of the Cartesian
models (e.g. Bursa-Wolf or Molodensky-Badekas) is preferable may arise. The least
squares adjustment procedure linearises the models by using the first partial derivatives.
If higher order partial derivatives of the Cartesian or ellipsoidal models, or both, are
significant then the least squares adjustment will not give accurate answers for the
adjusted observations and parameters. The differences between the results and the
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observation residuals obtained from each method can be statistically tested and the
better method chosen. In solutions obtained with real and simulated data, the differences
between the results from each of the above models have been less than 1 mm for adjusted
lengths and co-ordinates and may therefore be ignored. The differences in the parameters
were also found to be insignificant.

Network Geometry

The geometrical formulation of a similarity transformation represents a continuum.
Replacing this continuum by a discrete set of common points can cause errors. Moreover,
in the presence of observational and computational errors, the accuracy of the estimated
parameters may vary considerably. This depends on the spatial distribution of the points
used. Hence the implications of the spatial distribution of the points of the network
must be studied.

Points should not be collinear because components of rotations about axes parallel
to the line of points cannot be determined. For a stable solution it is important that
the points are spatially well distributed. For example, a network with an uneven
geographical spread of points will cause the solution to be biased towards the areas
of high density. Points in areas of low density will be disadvantaged and probably have
large corrections to their co-ordinates. Thus an even geographical distribution of points
is desirable.

Parameters

The minimum number of observations required to solve for the seven parameters
of a similarity transformation is seven. This condition could be satisfied by two common
points, with their three co-ordinates known in each net, and a third point with three
co-ordinates in one net known and one co-ordinate in the other net known. Three
common points, each with their three co-ordinates known in each net, will yield a
redundancy of two. However it is desirable to use at least four common sites because
there should be at least four degrees of freedom in a solution for seven parameters.

Initially a surveyor should solve for all seven parameters and then test their estimates
using the statistical tests given below. If a subset of parameters is found to be
insignificantly different to zero then a second solution should be calculated with those
parameters held fixed at zero.

It is quite likely that different parts of a continental geodetic network will have
distortions in scale and orientation. These distortions may be due to systematic errors
in the data. If distortions exist then it is better to solve for a number of sets of local
parameters which better represent the local and regional areas, rather than determining
one set of parameters for the whole of the continent. Transformation parameters over
a large area will represent mean values of scale, rotation and translation for the area
and will tend to smooth out distortions. Therefore the total network should be divided
into subnets to check consistency throughout the whole area. However it is necessary
to be sure that any differences in the parameters from one region to another are
statistically significant. An appropriate test is given below.

Parameters representing systematic errors can also be added to the basic similarity
transformation models given above (Harvey, 1985). If the model includes a large number
of parameters, the adjustment may lead to a poorly conditioned system of equations.
Many parameters will usually fit the data better, that is produce smaller residuals, than
a few parameters. But the estimates of the parameters may not be accurate. Moreover,
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the degrees of freedom of the adjustment will be reduced and therefore the statistical
tests will be less effective. Thus, if the data does not contain significant contributions
from the systematic errors for which parameters have been added, then using these
additional parameters will give smaller residuals but not necessarily a more accurate
solution. It should be noted that a scale difference between two nets may be due to
systematic errors in the ground heights as well as an error in either GPS or ground
distance scale.

The effects of systematic errors can be assessed by procedures such as the use of
“check points”. One check for systematic model deformations is to compare the
estimated transformation parameters from an adjustment using all common sites with
those from another solution where one site has been eliminated (the check point). If
the changes in the adjustment results are acceptable, then the adjustment is stable and
reliable. The co-ordinates of the check point in net A should be transformed by the
parameters determined by the second solution. The transformed co-ordinates should
then be compared with the corresponding a priori co-ordinates in net B.

Check points are a valuable tool but, if they are poorly chosen, can give misleading
information about the stability of a solution. For instance, a check point in a cluster
of points checks only the consistency within the cluster itself.

The whole process can only be partly automated. The surveyor must decide which
parameters to hold fixed, whether to accept the results of statistical tests, and which
data to delete. He must also make judgements on the stability of the solution and
reliability of the results.

Scale Factor Residuals

As well as combining the two data sets using one of the above models, the surveyor
can and should investigate the scale factor as determined from each baseline. A scale
factor can be determined for each baseline using —

s = Lp/La (12)
where L is a length in net A and Lg the corresponding length in net B. These scale
factors, and possibly also the estimate of the overall scale factor from a transformation

model, can then be plotted. Generally, the scale difference, which is the scale factor
minus one, would be plotted as in the hypothetical example in Figure 3 below.

Figure 3. Individual Baseline Scale Factors (hypothetical example)

In the plot the error bars of each point represent the standard deviations of the
scale factor. These standard deviations are calculated as follows:

b = [65 38 ] &g O s
3LB oLA LB
0 §7LA
3s
SLA

gL/ LA* + LB? g1 / LA®
(6’LB + &'LA) / LA? (13)
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Figure 3. Individual Baseline Scale Factors (hypothetical example)

Note that scale factor, if determined from a single baseline, is not as precise as
the baseline lengths. For example, if the baseline is measured to 0.10 ppm in both nets,
the derived scale factor will have a precision of 0.14 ppm. It should also be noted that
the longest lines do not necessarily give the best determinations of scale factor. The
lines with the best fractional (ppm) accuracies give the most precise estimates of scale
factor. That is, a very accurate short baseline may have more effect on an estimated
seale factor than a poor quality long line. In this way the surveyor can determine which
baselines are having the most effect on the overall scale factor as determined by a least
squares solution of all data.

This procedure does not consider the correlations between baseline lengths (which
are usually small) but it is useful for finding inconsistencies or outliers in the data and
the relative power of each baseline to the overall scale factor. The surveyor should look
for the following:
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1. Single baselines being inconsistent with the overall network, such as line B-D in
Figure 3. Standard statistical tests for detecting outliers should be applied.

2. All baselines from one site being inconsistent with the rest.

All baselines in one direction (e.g. East-West) being inconsistent.

4, If there are many baselines so that the data can reasonably be separated into regions,
then all baselines in a region being inconsistent with the overall network.

(98

Interpretation of the Resuits of a Transformation Adjustment

The results of a transformation adjustment are two sets of adjusted co-ordinates
which differ by the adjusted parameters. In any least squares adjustment the
observations are adjusted as well as the parameters being estimated. In this case in
particular, the observations (co-ordinates) will be adjusted because, for example, there
are two measurements of each length — once in each net. Even though the two input
co-ordinate sets are generally not correlated with each other, the adjusted co-ordinate
sets will be slightly correlated (the magnitudes of the correlations depend on the data).

The adjusted co-ordinates of network A have the same weighted scale, orientation
and location as their a priori co-ordinates. Similarly, the adjusted co-ordinates of
network B have the same weighted scale, orientation and location as their a priori
co-ordinates. Thus, the overall scale, location and orientation of each network remains
unchanged. Only the individual co-ordinates, angles and lengths are changed (of the
order of the standard deviations of the observations). In other words, the movements
of points within a network are small but the overall nature of the net does not change.
If a transformation adjustment is computed between the @ priori and adjusted versions
of a net, it will be found that the estimated rotation angles, scale difference and
translations will all equal zero.

The results are convenient for surveyors because the co-ordinates of points of a
network do not change by large transformation parameters. Any large change in co-
ordinates of a survey control network necessitates recomputation and design of surveys
and construction work based on the control network, and is therefore undesirable. The
co-ordinates of the fundamental point of the ground net (e.g. Johnston in Australia)
will not change if its @ priori variances equal zero, even if it is not included in the
transformation calculations. This is also important for surveying applications.

The precision of the adjusted length of a line is a function of the a priori VCV
matrix of the observations (which is usually different for each net), the lengths of the
baselines, and the precision of the adjusted scale factor (which is not zero unless the
scale factor is held fixed). Therefore the precision of an adjusted baseline fength will
generally be different in the two networks. They will be the same only when the @ priori
VCV of the observables of each net is the same or when the scale factor is held fixed
(not necessarily at unity). Since an adjusted length in the B network, LB, equals the
corresponding adjusted length in the A net, LA, times the scale factor, s, it can be shown
that —

o'Lg = s°o’a + 25 LA oo + LA? 07 (14)

Obviously ¢%; g equals 0?5 if 0% and o1 A equal zero, and s equals one, that is
when the scale factor is fixed at unity. Note that if s is not held fixed then generally
os o Will not equal zero because of correlations introduced in the least squares
adjustment. Also note that g 5 may be negative and thus allows oy g to be less than
oL A- If sis held fixed at some value other than unity then o1 g does not exactly equal
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ILA- quever since s rarely differs from unity by more than a few ppm the difference
will be insignificant.

Statistical Tests

The application of statistical tests can sometimes be a demanding task, especially
when the data sets are Jarge. Moreover, most tests require the full VCV matrices, which
may be very large. However, because there are not many parameters in a transformation
adjustment and there are usually only a few common points, none of the tasks described
below are too demanding and should all be carried out.

The statistical tests discussed below assume that the observations and their residuals
are normally distributed. So before the tests can be applied it is necessary to check
that the residuals are normally distributed. The tests for normal distribution involve
calculating the statistical moments and are discussed by Hoar (1975). If the residuals
are not pormally distributed then the results of the adjustment may be biased by
systematic errors. The standard F test of the a posteriori variance factor should also
be applied.

After the adjustment the co-ordinates of each point should be tested for outliers.
This is done by comparing the correction to a co-ordinate with its standard deviation.
Even though the co-ordinates are obtained from previously tested adjustments they
may stil'l contain unknown systematic errors such as, the ground and GPS surveys not
measuring to exactly the same points. As mentioned above, the corrections to baseline
lengths should also be investigated. When the residuals are correlated, it is inappropriate
to use a simple rejection criterion based on 2.5 or 3 times the standard deviation of
the residuals. Nevertheless this criterion is often applied because of its simplicity. More
elaborate methods are given by Pope (1976) and Vanicek and Krakiwsky (1982).

Tests of the Estimated Parameters

_ The following multivariate tests should be applied to determine whether the
estimate o.f a parameter or group of parameters is significant. Calculate t from (Vanicek
and Krakiwsky, 1982) —

t = (U-X)T Cx" (U=X) (15)

where X is. the vector of parameter estimates being tested, U is the vector of a priori
val_ues against which each Xi is being compared (often the null vector), and Cx is the
estimated VCV of the parameters being tested. The vectors X and U may contain either
all the parameters or some subset of them. If a subset is being tested than the
corresponding portion of the VCV matrix of the parameters must be used. The
hypothesis that X; # U, should be rejected if —

t <X’ka (16)

where k i_s the number of parameters being tested and « is the significance level. If
X is not significantly different to U; at the « level then the surveyor can be (1-a)x 100%
sure that the estimate(s) can be ignored and a readjustment safely computed holding
the tested parameters fixed at the U; values. If only a single parameter is being tested

then it is obvious that )

t = (u=x)*/ 0,? a7
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For the test of a single parameter at the 95% confidence level, the parameter
estimate is insignificant if its difference from the test value (u) is less than 1.96 times
its standard deviation. o

The above procedure tests the parameters simultaneously and is rigorous. All
variances and covariances are taken into account. However, in the test given ab'ove.
(equation 16) it is assumed that the a priori variance factor is known.. If the a priori
variance factor is not known, then the following test should be used (Mikhail, 1976) —

t' = (U=X)T Cx! (U=-X)/ k (18)

where Cx is the estimated VCV matrix of the parameters, or the relevant portion of
it, multiplied by the a posteriori estimate of the variance factor.
The hypothesis that X; # Uj should be rejected if —

' < Fro (19)

where r is the number of degrees of freedom in the adjustment. If a reliable VC_V was
used with the input data, then the a priori variance factor is known (=1). The estlmat_ed
a posteriori variance factor is then tested using the standard proc'edures. Otherw1§e
the test in equation 19 should be used. The value of t' required to reject th_e hypothesis
will be much larger than the value of t required in equation 16, unless ris very 'large.

If some parameter estimates do not differ significantly from zero, it is adv1saple
to recompute the adjustment with these parameters fixed at zero. The effect, of hqldmg
these parameters fixed, on the estimates of the other parameters, the adjusted
co-ordinates, and the adjusted lengths should also be studied (see Harvey [1985] for
a method).

Tests of Regional Distortions

Two sets of transformation parameters should be statistically tested to determine
whether they are significantly different. This can be done by using the same tests as
those applied in deformation analysis to determine if two sets of co.-ordmates (at
different epochs) are significantly different. This test was originally given by Pelzer
(1971) and quoted by Chen (1983); rewritten with different symbols it is —

T = (X2 — XDT (Cx; + Cx2)' (X2 = X1) < Fokrisr2
(X2Cx2X2 + X1Cx X1) k / (1] +712) (20)

where X1 and X2 are the two sets of transformation parameters,
Cx; and Cxy are the estimated VCV of the parameters.
rl and r2 are the degrees of freedom of the solutions for X, and X, (the
degrees of freedom usually equal 3 x number of points —7).
k is the number of parameters (usually 7).

1f T is less than F, then X2 is not significantly different to X1 at the 1-« (e.g. 95 %)
confidence level. This tests the parameters simultaneously (i.e. multivariate) and is
rigorous in that it uses the variances and covariances of the parameters. Hoyvever this
test assumes that X1 and X2 are not correlated. If the parameters are derived from
subsets which do not contain any points in common then XI and X2 will not be

correlated.
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Some Applications of Transformations

Transformation adjustments are used for two purposes:

1. To relate two datums empirically. That is, obtain measurements of a number
of points with co-ordinates known in both systems and solve for the transformation
parameters.

2. Use known transformation parameters to convert co-ordinates, or baseline
component vectors, from one datum to another. However it must be remembered that
a transformation is essentially an interpolation procedure. So the results may be
unreliable if the parameters are used to transform the co-ordinates of a point outside
the region spanned by the common points which were used to derive the parameters.

It is beyond the scope of this paper to consider all aspects of the combination
of GPS with ground data. However a number of questions/points which may need
to be considered are listed below. Moreover, the answers to these questions will usually
depend on the actual data and its quality in a particular region or for a particular
application. Thus generally applicable answers may not exist — further research is
needed.

One common application will be the densification of the ground net by GPS
observations. In this case GPS observations can be made on several points with known
ground co-ordinates — thus giving common points to solve for the transformation
parameters. GPS observations will also be made on numerous points of unknown
ground co-ordinates. Then a few options exist to determine the corresponding ground
co-ordinates of these new GPS points. Should the GPS-derived values be distorted to
fit the local control? Should one GPS point be held fixed in the GPS adjustment?
Or should all GPS points common to the ground net be held fixed in the GPS
adjustment? Problems will arise if the relative positioning observations by GPS are
more accurate than that of the existing ground control. If GPS observations are more
accurate the ground net may need to be strengthened and perhaps even readjusted using
the GPS observations.

Which adjusted net should be adopted?

Should the adjusted co-ordinates of net A or the adjusted co-ordinates of net B
be adopted? If it is desired to adopt the GPS scale, orientation and location, then the
adjusted GPS co-ordinates should be adopted. Similarly, if it is desired to adopt the
ground scale, orientation and location, then the adjusted ground co-ordinates should
be adopted. If the GPS data is more accurate then the adjusted GPS net should be
adopted if the net with the best internal adjustment is desired.

If the two adjusted nets are of similar quality and if the best internal adjustment
is required, then that net with the smallest determinant of the VCV of the adjusted
lengths should be adopted. If there are many points in the adjustment and the internal
adjustment of data in a certain region is of prime interest, then the determinants of
the VCV of the adjusted lengths of only the baselines in that region should be compared.
The determinants of the VCV of the adjusted co-ordinates should not be used for this
test because the VCV of co-ordinates may contain large components due to a network’s
datum defects and its distance from the fixed point (e.g. Johnston origin).

However in practice it may not be desirable to change the co-ordinates of the ground
points. One way to overcome this is to solve for the transformation parameters with
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the ground co-ordinates held fixed. In such a case it would be wise to compare the
results with those from a proper adjustment where the ground co-ordinates are not
held fixed. Then the errors caused by holding the ground points fixed would be known.

VCV of Transformed Co-ordinates

When known transformation parameters are used to transform co-ordinates it is
also desirable to appropriately convert the VCV of those co-ordinates. The VCV of
transformed co-ordinates can be determined by applying the law of propagation of
variances, as follows. Since —

Xg| =5 1 k -0 Xa | + | Tx
Yg -k 1 w Ya Ty
Zy 6 -w 1 Za Tz |
the
VCVxyzg = J| VCVxyz, O JT
where J = s sk —s8 Xap + kYa — 0Za 0 —sZy sYA100
—sk S  Sw YA - kXA + wZA SZa 0 - SXA 010
s — sw s O0XA — wYp + Za — SYA  sXa 0001

In VCVp (the VCV matrix of the parameters) the parameters are in the order: s, @,
0, k, Tx, Ty, Tz, VCVxyzp and VCVxyz, are 3% 3 matrices, VCVp is a 7x7 matrix.

Similarly, the VCV matrix of a number of transformed co-ordinates (Xgj, Ygi,
Zg)) to (Xgn» YBn, ZBn) can be determined as follows —

VCVxyzg = J [VCVXYZA 0 —| T

where
J=[Foo Gl
0O FO G2
00F G3
I 0 F Gn
F=| s sk — sf
- sk S Sw
L s6 — sw s |

122 The Australian Surveyor, June 1986, Vol. 33 No. 2

TRANSFORMATION OF 3D CO-ORDINATES

and
Gi = XAi +kYAi —9ZA'l 0 _SZAi SYAi 100
Yai —kXAi + wZaj SZAj 0 _SXAi 010
OXAi —wYa; +Zaj —sYaj sXAi 0 001

VCVxyzg and VCVxyz, are3nx 3n matrices.

Thus the VCV matrix of the transformed co-ordinates of a point is a combination
of the VCV matrices of the original co-ordinates and the transformation parameters
used. Therefore if the estimates of the transformation parameters are to be published,
or otherwise distributed for use, it is desirable that the VCV of the parameters also
be published. Alternatively the standard deviations and correlations of the parameters
could be published because — 1) they provide a clearer indication of the quality of
the parameter estimates, and 2) the VCV can be easily formed from the standard
deviations and correlations. In either case only 28 terms need be given because the
VCV and correlation matrices are symmetric and there are at most seven parameters.
An example of desirable output for publication of the parameters is given in Table 1.

Table 1: Example of Qutput

(a) Adjusted transformation parameters. (Bursa-Wolf model)

Parameter Adjusted Value

Scale factor (s—1) 0.303 + 0.448 ppm
Rotation about X axis (w) -0.790 + 0.315 secs
Rotation about Y axis (6) —-1.078 + 0.659 secs
Rotation about Z axis (k) —-0.142 + 0.613 secs
Translation along X axis —109.111 + 18.428 m
Translation along Y axis —64.439 + 16.627 m
Translation along Z axis 118.734 + 15.767 m

(b) Correlations between adjusted parameters.

S w 0 k Tx Ty Tz
1.000

-0.109  1.000

0.320  0.139  1.000

0.340 —-0.447 0.795 1.000

Tx -0.293 0.118 —-0.958 -0.929 1.000

Ty -0.346 0.685 —-0.603 -0.957 0.790 1.000

Tz 0314 0.398 0961 0.612 -0.847 -0.375 1.000J

~og w

Concluding Remarks

The following comments may help to clarify some common misconceptions.
* The Molodensky-Badekas model and the Bursa-Wolf model define the translation
terms differently. They represent different methods of describing the same
transformation relationship between two sets of co-ordinates.
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® The ellipsoidal method could also be applied, especially if computer resources are
limited. It may save the step which converts the co-ordinates and their VCV to a
Cartesian system.

¢ The Bursa-Wolf model, the Molodensky-Badekas model and the ellipsoidal model
all produce the same transformed co-ordinates and VCV when correctly applied, i.e.
the transformation parameters and their full VCV are used.

¢ The software that solves for the transformation parameters should use the full VCV
of the input co-ordinates.

¢ The transformation models and procedures are applicable to many different types
of data e.g. Doppler/ground, GPS/ground, GPS/VLBI.

® The abbreviated version of the rotation matrix should not be used if the rotation
angles are large.

¢ When determining the transformation parameters all seven parameters should initially
be estimated. If the estimates of some of the parameters are statistically insignificant
(using the multivariate test) then, and only then, the solution should be recomputed
with those parameters fixed at zero.

¢ Multivariate statistical tests should be applied to determine whether differences
between transformation parameters for different regions are significant. If the
differences between two regions are not significant then one set of parameters should
be determined for the combined region. Then there will be a substantial increase in
the number of redundancies in the solution.

® When publishing or distributing derived transformation parameters for others to use
the following should be given —

- the parameters,
the model used,
the VCV of the parameters or their standard deviations and correlations (28 terms),
the degrees of freedom in the adjustment (for statistical tests),
the co-ordinates of the barycentre (xm, ym, zm), if the Molodensky-Badekas model
was used.

¢ The VCV of transformed co-ordinates is a function of the VCV of the transformation
parameters as well as the VCV of the original co-ordinates.

e [f co-ordinates and their VCV are transformed by parameters with standard deviations
but correlations ignored, then the Molodensky-Badekas model should be used
(because the correlation terms will be smaller). However this is not a wise procedure.
Note that the co-ordinates of the barycentre will be needed.
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